Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 50(10): e59, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35235944

RESUMO

Despite the rapid and broad implementation of CRISPR-Cas9-based technologies, convenient tools to modulate dose, timing, and precision remain limited. Building on methods using synthetic peptide nucleic acids (PNAs) to bind RNA with unusually high affinity, we describe guide RNA (gRNA) spacer-targeted, or 'antispacer', PNAs as a tool to modulate Cas9 binding and activity in cells in a sequence-specific manner. We demonstrate that PNAs rapidly and efficiently target complexed gRNA spacer sequences at low doses and without design restriction for sequence-selective Cas9 inhibition. We further show that short PAM-proximal antispacer PNAs achieve potent cleavage inhibition (over 2000-fold reduction) and that PAM-distal PNAs modify gRNA affinity to promote on-target specificity. Finally, we apply antispacer PNAs for temporal regulation of two dCas9-fusion systems. These results present a novel rational approach to nucleoprotein engineering and describe a rapidly implementable antisense platform for CRISPR-Cas9 modulation to improve spatiotemporal versatility and safety across applications.


Assuntos
Ácidos Nucleicos Peptídicos , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Ácidos Nucleicos Peptídicos/farmacologia , RNA Guia de Cinetoplastídeos/genética
2.
Proc Natl Acad Sci U S A ; 115(4): E802-E811, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29279368

RESUMO

The HIV-1 pandemic affecting over 37 million people worldwide continues, with nearly one-half of the infected population on highly active antiretroviral therapy (HAART). Major therapeutic challenges remain because of the emergence of drug-resistant HIV-1 strains, limitations because of safety and toxicity with current HIV-1 drugs, and patient compliance for lifelong, daily treatment regimens. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) that target the viral polymerase have been a key component of the current HIV-1 combination drug regimens; however, these issues hamper them. Thus, the development of novel more effective NNRTIs as anti-HIV-1 agents with fewer long-term liabilities, efficacy on new drug-resistant HIV-1 strains, and less frequent dosing is crucial. Using a computational and structure-based design strategy to guide lead optimization, a 5 µM virtual screening hit was transformed to a series of very potent nanomolar to picomolar catechol diethers. One representative, compound I, was shown to have nanomolar activity in HIV-1-infected T cells, potency on clinically relevant HIV-1 drug-resistant strains, lack of cytotoxicity and off-target effects, and excellent in vivo pharmacokinetic behavior. In this report, we show the feasibility of compound I as a late-stage preclinical candidate by establishing synergistic antiviral activity with existing HIV-1 drugs and clinical candidates and efficacy in HIV-1-infected humanized [human peripheral blood lymphocyte (Hu-PBL)] mice by completely suppressing viral loads and preventing human CD4+ T-cell loss. Moreover, a long-acting nanoformulation of compound I [compound I nanoparticle (compound I-NP)] in poly(lactide-coglycolide) (PLGA) was developed that shows sustained maintenance of plasma drug concentrations and drug efficacy for almost 3 weeks after a single dose.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , HIV-1 , Animais , Fármacos Anti-HIV/farmacocinética , Simulação por Computador , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas
3.
Molecules ; 25(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046275

RESUMO

Unusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects. Advances in molecular design, chemical modification, and delivery have enabled systemic in vivo application of PNAs resulting in detectable editing in preclinical mouse models. In a model of ß-thalassemia, treated animals demonstrated clinically relevant protein restoration and disease phenotype amelioration, suggesting a potential for curative therapeutic application of PNAs to monogenic disorders. This review discusses the rationale and advances of PNA technologies and their application to gene editing with an emphasis on structural biochemistry and repair.


Assuntos
Fibrose Cística/terapia , DNA/genética , Edição de Genes/métodos , Terapia Genética/métodos , Ácidos Nucleicos Peptídicos/genética , Talassemia beta/terapia , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , DNA/metabolismo , Modelos Animais de Doenças , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/metabolismo , Reparo de DNA por Recombinação , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia
4.
Molecules ; 23(3)2018 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534473

RESUMO

Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies.


Assuntos
DNA/metabolismo , Edição de Genes/métodos , Ácidos Nucleicos Peptídicos/farmacologia , Animais , DNA/química , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/uso terapêutico
5.
Yale J Biol Med ; 90(4): 583-598, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29259523

RESUMO

Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/uso terapêutico , Elementos Antissenso (Genética) , Estabilidade de Medicamentos , Edição de Genes , Humanos , MicroRNAs , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacocinética , Solubilidade
7.
Bioeng Transl Med ; 8(3): e10458, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206203

RESUMO

Through preimplantation genetic diagnosis, genetic diseases can be detected during the early stages of embryogenesis, but effective treatments for many of these disorders are lacking. Gene editing could allow for correction of the underlying mutation during embryogenesis to prevent disease pathogenesis or even provide a cure. Here, we demonstrate that administration of peptide nucleic acids and single-stranded donor DNA oligonucleotides encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to single-cell embryos allows for editing of an eGFP-beta globin fusion transgene. Blastocysts from treated embryos exhibit high levels of editing (~94%), normal physiological development, normal morphology, and no detected off-target genomic effects. Treated embryos reimplanted to surrogate moms show normal growth without gross developmental abnormalities and with no identified off-target effects. Mice from reimplanted embryos consistently show editing, characterized by mosaicism across multiple organs with some organ biopsies showing up to 100% editing. This proof-of-concept work demonstrates for the first time the use of peptide nucleic acid (PNA)/DNA nanoparticles as a means to achieve embryonic gene editing.

8.
Cell Rep Phys Sci ; 4(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37920723

RESUMO

Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in O-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.

9.
Nat Biotechnol ; 40(3): 325-334, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34711990

RESUMO

Gene amplification drives oncogenesis in a broad spectrum of cancers. A number of drugs have been developed to inhibit the protein products of amplified driver genes, but their clinical efficacy is often hampered by drug resistance. Here, we introduce a therapeutic strategy for targeting cancer-associated gene amplifications by activating the DNA damage response with triplex-forming oligonucleotides (TFOs), which drive the induction of apoptosis in tumors, whereas cells without amplifications process lower levels of DNA damage. Focusing on cancers driven by HER2 amplification, we find that TFOs targeting HER2 induce copy number-dependent DNA double-strand breaks (DSBs) and activate p53-independent apoptosis in HER2-positive cancer cells and human tumor xenografts via a mechanism that is independent of HER2 cellular function. This strategy has demonstrated in vivo efficacy comparable to that of current precision medicines and provided a feasible alternative to combat drug resistance in HER2-positive breast and ovarian cancer models. These findings offer a general strategy for targeting tumors with amplified genomic loci.


Assuntos
Neoplasias da Mama , Amplificação de Genes , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dano ao DNA , Feminino , Genômica , Humanos , Oligonucleotídeos
10.
J Clin Med ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604776

RESUMO

Antisense oligonucleotides (ASOs) bind sequence specifically to the target RNA and modulate protein expression through several different mechanisms. The ASO field is an emerging area of drug development that targets the disease source at the RNA level and offers a promising alternative to therapies targeting downstream processes. To translate ASO-based therapies into a clinical success, it is crucial to overcome the challenges associated with off-target side effects and insufficient biological activity. In this regard, several chemical modifications and diverse delivery strategies have been explored. In this review, we systematically discuss the chemical modifications, mechanism of action, and optimized delivery strategies of several different classes of ASOs. Further, we highlight the recent advances made in development of ASO-based drugs with a focus on drugs that are approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical applications. We also discuss various promising ASO-based drug candidates in the clinical trials, and the outstanding opportunity of emerging microRNA as a viable therapeutic target for future ASO-based therapies.

11.
Methods Mol Biol ; 2105: 261-281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32088877

RESUMO

Many important biological applications of peptide nucleic acids (PNAs) target nucleic acid binding in eukaryotic cells, which requires PNA translocation across at least one membrane barrier. The delivery challenge is further exacerbated for applications in whole organisms, where clearance mechanisms rapidly deplete and/or deactivate exogenous agents. We have demonstrated that nanoparticles (NPs) composed of biodegradable polymers can encapsulate and release PNAs (alone or with co-reagents) in amounts sufficient to mediate desired effects in vitro and in vivo without deleterious reactions in the recipient cell or organism. For example, poly(lactic-co-glycolic acid) (PLGA) NPs can encapsulate and deliver PNAs and accompanying reagents to mediate gene editing outcomes in cells and animals, or PNAs alone to target oncogenic drivers in cells and correct cancer phenotypes in animal models. In this chapter, we provide a primer on PNA-induced gene editing and microRNA targeting-the two PNA-based biotechnological applications where NPs have enhanced and/or enabled in vivo demonstrations-as well as an introduction to the PLGA material and detailed protocols for formulation and robust characterization of PNA/DNA-laden PLGA NPs.


Assuntos
Nanopartículas/química , Ácidos Nucleicos Peptídicos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , DNA/genética , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Edição de Genes , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Interferência de RNA
12.
J Control Release ; 314: 92-101, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31654688

RESUMO

Nanoparticles (NPs) are promising vehicles for drug delivery because of their potential to target specific tissues [1]. Although it is known that NP size plays a critical role in determining their biological activity, there are few quantitative studies of the role of NP size in determining biodistribution after systemic administration. Here, we engineered fluorescent, biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs in a range of sizes (120-440nm) utilizing a microfluidic platform and used these NPs to determine the effect of diameter on bulk tissue and cellular distribution after systemic administration. We demonstrate that small NPs (∼120nm) exhibit enhanced uptake in bulk lung and bone marrow, while larger NPs are sequestered in the liver and spleen. We also show that small NPs (∼120nm) access specific alveolar cell populations and hematopoietic stem and progenitor cells more readily than larger NPs. Our results suggest that size of PLGA NPs can be used to tune delivery to certain tissues and cell populations in vivo.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica , Tamanho da Partícula , Distribuição Tecidual
13.
Biomaterials ; 212: 28-38, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102854

RESUMO

Metallic stents cause vascular wall damage with subsequent smooth muscle cell (SMC) proliferation, neointimal hyperplasia, and treatment failure. To combat in-stent restenosis, drug-eluting stents (DES) delivering mTOR inhibitors such as sirolimus or everolimus have become standard for coronary stenting. However, the relatively non-specific action of mTOR inhibitors prevents efficient endothelium recovery and mandates dual antiplatelet therapy to prevent thrombosis. Unfortunately, long-term dual antiplatelet therapy leads to increased risk of bleeding/stroke and, paradoxically, myocardial infarction. Here, we took advantage of the fact that nitric oxide (NO) increases Fas receptors on the SMC surface. Fas forms a death-inducing complex upon binding to Fas ligand (FasL), while endothelial cells (ECs) are relatively resistant to this pathway. Selected doses of FasL and NO donor synergistically increased SMC apoptosis and inhibited SMC growth more potently than did everolimus or sirolimus, while having no significant effect on EC viability and proliferation. This differential effect was corroborated in ex vivo pig coronaries, where the neointimal formation was inhibited by the drug combination, but endothelial viability was retained. We also deployed FasL-NO donor-releasing ethylene-vinyl acetate copolymer (EVAc)-coated stents into pig coronary arteries, and cultured them in perfusion bioreactors for one week. FasL and NO donor, released from the stent coating, killed SMCs close to the stent struts, even in the presence of flow rates mimicking those of native arteries. Thus, the FasL-NO donor-combination has a potential to prevent intimal hyperplasia and in-stent restenosis, without harming endothelial restoration, and hence may be a superior drug delivery strategy for DES.


Assuntos
Células Endoteliais/citologia , Proteína Ligante Fas/farmacologia , Miócitos de Músculo Liso/citologia , Óxido Nítrico/farmacologia , Sirolimo/farmacologia , Animais , Reatores Biológicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Vasos Coronários/citologia , Células Endoteliais/efeitos dos fármacos , Everolimo/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Miócitos de Músculo Liso/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Polímeros/química , Suínos
14.
Antiviral Res ; 167: 110-116, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034849

RESUMO

Combination antiretroviral therapy (cART) has been proven effective in inhibiting human immunodeficiency virus type 1 (HIV-1) infection and has significantly improved the health outcomes in acquired immune deficiency syndrome (AIDS) patients. The therapeutic benefits of cART have been challenged because of the toxicity and emergence of drug-resistant HIV-1 strains along with lifelong patient compliance resulting in non-adherence. These issues also hinder the clinical benefits of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which are one of the vital components of cART for the treatment of HIV-1 infection. In this study, using a computational and structural based drug design approach, we have discovered an effective HIV -1 NNRTI, compound I (Cmpd I) that is very potent in biochemical assays and which targets key residues in the allosteric binding pocket of wild-type (WT)-RT as revealed by structural studies. Furthermore, Cmpd I exhibited very potent antiviral activity in HIV-1 infected T cells, lacked cytotoxicity (therapeutic index >100,000), and no significant off-target effects were noted in pharmacological assays. To address the issue of non-adherence, we developed a long-acting nanoformulation of Cmpd I (Cmpd I-NP) using poly (lactide-coglycolide) (PLGA) particles. The pharmacokinetic studies of free and nanoformulated Cmpd I were carried out in BALB/c mice. Intraperitoneal administration of Cmpd I and Cmpd I-NP in BALB/c mice revealed prolonged serum residence time of 48 h and 30 days, respectively. The observed serum concentrations of Cmpd I in both cases were sufficient to provide >97% inhibition in HIV-1 infected T-cells. The significant antiviral activity along with favorable pharmacological and pharmacokinetic profile of Cmpd I, provide compelling and critical support for its further development as an anti-HIV therapeutic agent.


Assuntos
Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Infecções por HIV/virologia , Transcriptase Reversa do HIV/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Nanopartículas/virologia , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacocinética , Inibidores da Transcriptase Reversa/farmacologia
15.
Nat Commun ; 9(1): 2481, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946143

RESUMO

Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth. In utero introduction of nanoparticles containing peptide nucleic acids (PNAs) and donor DNAs corrects a disease-causing mutation in the ß-globin gene in a mouse model of human ß-thalassemia, yielding sustained postnatal elevation of blood hemoglobin levels into the normal range, reduced reticulocyte counts, reversal of splenomegaly, and improved survival, with no detected off-target mutations in partially homologous loci. This work may provide the basis for a safe and versatile method of fetal gene editing for human monogenic disorders.


Assuntos
Terapias Fetais/métodos , Edição de Genes/métodos , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Nanopartículas/administração & dosagem , Reparo Gênico Alvo-Dirigido/métodos , Animais , DNA de Cadeia Simples/administração & dosagem , DNA de Cadeia Simples/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/genética , Gravidez , Segurança , Útero , Globinas beta/genética , Talassemia beta/sangue , Talassemia beta/genética , Talassemia beta/terapia
16.
Biomaterials ; 144: 144-154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28829952

RESUMO

New methods for long-lasting protection against sexually transmitted disease, such as the human immunodeficiency virus (HIV), are needed to help reduce the severity of STD epidemics, especially in developing countries. Intravaginal delivery of therapeutics has emerged as a promising strategy to provide women with local protection, but residence times of such agents are greatly reduced by the protective mucus layer, fluctuating hormone cycle, and complex anatomical structure of the reproductive tract. Polymeric nanoparticles (NPs) capable of encapsulating the desired cargo, penetrating through the mucosal surfaces, and delivering agents to the site of action have been explored. However, prolonged retention of polymer carriers and their enclosed materials may also be needed to ease adherence and confer longer-lasting protection against STDs. Here, we examined the fate of two poly (lactic acid)-hyperbranched polyglycerols (PLA-HPG) NP formulations - 1) nonadhesive PLA-HPG NPs (NNPs) and 2) surface-modified bioadhesive NPs (BNPs) - loaded with the antiretroviral elvitegravir (EVG) after intravaginal administration. BNP distribution was widespread throughout the reproductive tract, and retention was nearly 5 times higher than NNPs after 24 h. Moreover, BNPs were found to be highly associated with submucosal leukocytes and epithelial cell populations for up to 48 h after topical application, and EVG was retained significantly better in the vaginal lumen when delivered with BNPs as opposed to NNPs over a 24 h period. Our results suggest that bioadhesive PLA-HPG NPs can greatly improve and prolong intravaginal delivery of agents, which may hold potential in providing sustained protection over longer durations.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Preparações de Ação Retardada/química , Nanopartículas/química , Quinolonas/administração & dosagem , Administração Intravaginal , Animais , Fármacos Anti-HIV/farmacocinética , Feminino , HIV/efeitos dos fármacos , Infecções por HIV/prevenção & controle , Humanos , Camundongos Endogâmicos C57BL , Quinolonas/farmacocinética , Vagina/metabolismo , Vagina/virologia
17.
Mol Ther Nucleic Acids ; 9: 111-119, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246289

RESUMO

MicroRNAs (miRs) are frequently overexpressed in human cancers. In particular, miR-210 is induced in hypoxic cells and acts to orchestrate the adaptation of tumor cells to hypoxia. Silencing oncogenic miRs such as miR-210 may therefore offer a promising approach to anticancer therapy. We have developed a miR-210 inhibition strategy based on a new class of conformationally preorganized antisense γ peptide nucleic acids (γPNAs) that possess vastly superior RNA-binding affinity, improved solubility, and favorable biocompatibility. For cellular delivery, we encapsulated the γPNAs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). Our results show that γPNAs targeting miR-210 cause significant delay in growth of a human tumor xenograft in mice compared to conventional PNAs. Further, histopathological analyses show considerable necrosis, fibrosis, and reduced cell proliferation in γPNA-treated tumors compared to controls. Overall, our work provides a chemical framework for a novel anti-miR therapeutic approach using γPNAs that should facilitate rational design of agents to potently inhibit oncogenic microRNAs.

18.
J Control Release ; 232: 103-12, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27063424

RESUMO

Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors.


Assuntos
Neoplasias Encefálicas/metabolismo , Convecção , Sistemas de Liberação de Medicamentos , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/farmacocinética , Humanos , Masculino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Endogâmicos F344 , Ratos Nus , Ratos Sprague-Dawley , Carga Tumoral
19.
Nat Commun ; 7: 13304, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782131

RESUMO

The blood disorder, ß-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the γ position plus stimulation of the stem cell factor (SCF)/c-Kit pathway yielded high levels of gene editing in haematopoietic stem cells (HSCs) in a mouse model of human ß-thalassaemia. Injection of thalassemic mice with SCF plus nanoparticles containing γPNAs and donor DNAs ameliorated the disease phenotype, with sustained elevation of blood haemoglobin levels into the normal range, reduced reticulocytosis, reversal of splenomegaly and up to 7% ß-globin gene correction in HSCs, with extremely low off-target effects. The combination of nanoparticle delivery, next generation γPNAs and SCF treatment may offer a minimally invasive treatment for genetic disorders of the blood that can be achieved safely and simply by intravenous administration.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Ácidos Nucleicos Peptídicos/genética , Talassemia beta/terapia , Animais , Linhagem Celular , DNA/administração & dosagem , DNA/genética , Modelos Animais de Doenças , Hemoglobinas/análise , Humanos , Injeções Intravenosas , Camundongos , Camundongos Transgênicos , Nanopartículas/administração & dosagem , Ácidos Nucleicos Peptídicos/administração & dosagem , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/administração & dosagem , Fator de Células-Tronco/metabolismo , Globinas beta/genética , Talassemia beta/sangue , Talassemia beta/genética
20.
J Drug Target ; 23(7-8): 736-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26453169

RESUMO

Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One NP produced significantly higher brain uptake (∼0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects.


Assuntos
Encéfalo/metabolismo , Camptotecina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Camptotecina/farmacocinética , Camptotecina/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Polímeros/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA