Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev E ; 107(3-1): 034401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073033

RESUMO

Biological systems can rely on collective formation of a metachronal wave in an ensemble of oscillators for locomotion and for fluid transport. We consider one-dimensional chains of phase oscillators with nearest-neighbor interactions, connected in a loop and with rotational symmetry, so each oscillator resembles every other oscillator in the chain. Numerical integrations of the discrete phase oscillator systems and a continuum approximation show that directional models (those that do not obey reversal symmetry), can exhibit instability to short wavelength perturbations but only in regions where the slope in phase has a particular sign. This causes short wavelength perturbations to develop that can vary the winding number that describes the sum of phase differences across the loop and the resulting metachronal wave speed. Numerical integrations of stochastic directional phase oscillator models show that even a weak level of noise can seed instabilities that resolve into metachronal wave states.

2.
Phys Rev E ; 106(6-1): 064401, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671190

RESUMO

Recent experiments have shown that the nematode T. aceti can assemble into collectively undulating groups at the edge of fluid drops. This coordinated state consists of metachronal waves and drives fluid circulation inside the drop. We find that the circulation velocity is about 2 mm/s and nearly half the speed of the metachronal wave. We develop a quasi-two-dimensional hydrodynamics model using the Stokes flow approximation. The periodic motion of the nematodes constitute our moving boundary condition that drives the flow. Our model suggests that large-amplitude excursions of the nematode tails produce the fluid circulation. We discuss the constraints on containers that would enhance fluid motion, which could be used in the future design of on demand flow generating systems.

3.
Phys Rev E ; 104(1-1): 014412, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412226

RESUMO

At high concentration, free swimming nematodes known as vinegar eels (Turbatrix aceti), collectively exhibit metachronal waves near a boundary. We find that the frequency of the collective traveling wave is lower than that of the freely swimming organisms. We explore models based on a chain of oscillators with nearest-neighbor interactions that inhibit oscillator phase velocity. The phase of each oscillator represents the phase of the motion of the eel's head back and forth about its mean position. A strongly interacting directed chain model mimicking steric repulsion between organisms robustly gives traveling wave states and can approximately match the observed wavelength and oscillation frequency of the observed traveling wave. We predict body shapes assuming that waves propagate down the eel body at a constant speed. The phase oscillator model that impedes eel head overlaps also reduces close interactions throughout the eel bodies.

4.
Phys Rev E ; 101(5-1): 052618, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575281

RESUMO

We numerically explore the behavior of repelling and aligning self-propelled polar particles (boids) in two dimensions enclosed by a damped flexible and elastic loop-shaped boundary. We observe disordered, polar ordered, jammed, and circulating states. The latter produce a rich variety of boundary shapes, including circles, ovals, irregulars, ruffles, or sprockets, depending upon the bending moment of the boundary and the boundary to particle mass ratio. With the exception of the circulating states with nonround boundaries, states resemble those exhibited by attracting self-propelled particles, but here the confining boundary acts in place of a cohesive force. We attribute the formation of ruffles to instability mediated by pressure on the boundary when the speed of waves on the boundary approximately matches the self-propelled particle's swim speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA