Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33257524

RESUMO

Mycobacterium tuberculosis and its relatives, like many bacteria, have dynamic cell walls that respond to environmental stresses. Modulation of cell wall metabolism in stress is thought to be responsible for decreased permeability and increased tolerance to antibiotics. The signaling systems that control cell wall metabolism under stress, however, are poorly understood. Here, we examine the cell wall regulatory function of a key cell wall regulator, the serine/threonine phosphatase PstP, in the model organism Mycobacterium smegmatis We show that the peptidoglycan regulator CwlM is a substrate of PstP. We find that a phosphomimetic mutation, pstP T171E, slows growth, misregulates both mycolic acid and peptidoglycan metabolism in different conditions, and interferes with antibiotic tolerance. These data suggest that phosphorylation on PstP affects its activity against various substrates and is important in the transition between growth and stasis.IMPORTANCE Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in mycobacteria, including pathogens such as Mycobacterium tuberculosis However, little is known about how the cell wall is regulated in stress. We describe a pathway of cell wall modulation in Mycobacterium smegmatis through the only essential Ser/Thr phosphatase, PstP. We showed that phosphorylation on PstP is important in regulating peptidoglycan metabolism in the transition to stasis and mycolic acid metabolism in growth. This regulation also affects antibiotic tolerance in growth and stasis. This work helps us to better understand the phosphorylation-mediated cell wall regulation circuitry in Mycobacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/fisiologia , Mycobacterium smegmatis/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Moleculares , Mycobacterium smegmatis/fisiologia , Peptidoglicano/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Conformação Proteica
2.
bioRxiv ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39314339

RESUMO

The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that form lipid bilayers. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii . Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing. Author Summary: Gram-negative ESKAPE pathogens, including A cinetobacter baumannii , are responsible for a dramatic increase in the morbidity and mortality of patients in healthcare settings over the past two decades. Infections are difficult to treat due to antibiotic resistance and tolerance; however, broadly conserved mechanisms that promote antibiotic treatment failure have not been extensively studied. Herein, we identify an alternative lipid biosynthesis pathway that is induced in phosphate starvation that enables Gram-negative ESKAPE pathogens, including A. baumannii , Klebsiella pneumoniae , and Enterobacter cloacae to build lipid bilayers in the absence of glycerophospholipids, which are the canonical bilayers lipid. Replacement of the anionic phosphate in the lipid headgroup with zwitterionic ornithine and lysine promote survival against colistin, a last resort antimicrobial used against Gram-negative infections. These studies suggest that ESKAPE pathogens can remodel their bilayers with phosphate free lipids to overcome colistin treatment and that aminolipid biosynthesis could be targeted to improve antimicrobial treatment.

3.
PLoS One ; 18(1): e0280336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36634117

RESUMO

Mycobacteria expand their cell walls at the cell poles in a manner that is not well described at the molecular level. In this study, we identify a new polar factor, PlrA, that is involved in restricting peptidoglycan metabolism to the cell poles in Mycobacterium smegmatis. We establish that only the N-terminal membrane domain of PlrA is essential. We show that depletion of plrA pheno-copies depletion of polar growth factor Wag31, and that PlrA is involved in regulating the Wag31 polar foci.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo
4.
Front Microbiol ; 13: 1085918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713172

RESUMO

Mycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis. Our data show that Wag31 helps to control proper septation as well as new and old pole elongation. We have identified key amino acid residues involved in these essential functions. Enzyme assays revealed that Wag31 interacts with lipid metabolism by modulating acyl-CoA carboxylase (ACCase) activity. We show that Wag31 does not control polar growth by regulating the localization of cell wall precursor enzymes to the Intracellular Membrane Domain, and we also demonstrate that phosphorylation of Wag31 does not substantively regulate peptidoglycan metabolism. This work establishes new regulatory functions of Wag31 in the mycobacterial cell cycle and clarifies the need for new molecular models of Wag31 function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA