Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(11): 6599-607, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25942056

RESUMO

Hydroxyl radicals (OH) are known to control the oxidative capacity of the atmosphere but their influence on reactivity within indoor environments is believed to be of little importance. Atmospheric direct sources of OH include the photolysis of ozone and nitrous acid (HONO) and the ozonolysis of alkenes. It has been argued that the ultraviolet light fraction of the solar spectrum is largely attenuated within indoor environments, thus, limiting the extent of photolytic OH sources. Conversely, the ozonolysis of alkenes has been suggested as the main pathway of OH formation within indoor settings. According to this hypothesis the indoor OH radical concentrations span in the range of only 10(4) to 10(5) cm(-3). However, recent direct OH radical measurements within a school classroom yielded OH radical peak values at moderate light intensity measured at evenings of 1.8 × 10(6) cm(-3) that were attributed to the photolysis of HONO. In this work, we report results from chamber experiments irradiated with varying light intensities in order to mimic realistic indoor lighting conditions. The exhaust of a burning candle was introduced in the chamber as a typical indoor source causing a sharp peak of HONO, but also of nitrogen oxides (NOx). The photolysis of HONO yields peak OH concentration values, that for the range of indoors lightning conditions were estimated in the range 5.7 ×· 10(6) to 1.6 × 10(7) cm(-3). Excellent agreement exists between OH levels determined by a chemical clock and those calculated by a simple PSS model. These findings suggest that significant OH reactivity takes place at our dwellings and the consequences of this reactivity-that is, formation of secondary oxidants-ought to be studied hereafter.


Assuntos
Radical Hidroxila/química , Ácido Nitroso/química , Fotólise , Poluição do Ar em Ambientes Fechados/análise , Alcenos/química , Atmosfera , Radical Hidroxila/análise , Luz , Modelos Teóricos , Oxidantes/química , Oxirredução , Ozônio/química
2.
Environ Sci Pollut Res Int ; 23(7): 6300-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26614451

RESUMO

This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.


Assuntos
Poluentes Atmosféricos/análise , Eliminação de Resíduos/instrumentação , Compostos Orgânicos Voláteis/análise , Gerenciamento de Resíduos/instrumentação , Benzeno/análise , Formaldeído/análise , Umidade , Temperatura , Ventilação
3.
Environ Sci Pollut Res Int ; 20(7): 4659-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23288671

RESUMO

Volatile organic compounds (VOCs) and particles emitted by incense sticks and candles combustion in an experimental room have been monitored on-line and continuously with a high time resolution using a state-of-the-art high sensitivity-proton transfer reaction-mass spectrometer (HS-PTR-MS) and a condensation particle counter (CPC), respectively. The VOC concentration-time profiles, i.e., an increase up to a maximum concentration immediately after the burning period followed by a decrease which returns to the initial concentration levels, were strongly influenced by the ventilation and surface interactions. The obtained kinetic data set allows establishing a qualitative correlation between the elimination rate constants of VOCs and their physicochemical properties such as vapor pressure and molecular weight. The emission of particles increased dramatically during the combustion, up to 9.1(±0.2) × 10(4) and 22.0(±0.2) × 10(4) part cm(-3) for incenses and candles, respectively. The performed kinetic measurements highlight the temporal evolution of the exposure level and reveal the importance of ventilation and deposition to remove the particles in a few hours in indoor environments.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/análise , Tamanho da Partícula , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA