Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cytotherapy ; 24(10): 979-989, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35562303

RESUMO

Autologous whole cell vaccines use a patient's own tumor cells as a source of antigen to elicit an anti-tumor immune response in vivo. Recently, the authors conducted a systematic review of clinical trials employing these products in hematological cancers that showed a favorable safety profile and trend toward efficacy. However, it was noted that manufacturing challenges limit both the efficacy and clinical implementation of these vaccine products. In the current literature review, the authors sought to define the issues surrounding the manufacture of autologous whole cell products for hematological cancers. The authors describe key factors, including the acquisition, culture, cryopreservation and transduction of malignant cells, that require optimization for further advancement of the field. Furthermore, the authors provide a summary of pre-clinical work that informs how the identified challenges may be overcome. The authors also highlight areas in which future basic research would be of benefit to the field. The goal of this review is to provide a roadmap for investigators seeking to advance the field of autologous cell vaccines as it applies to hematological malignancies.


Assuntos
Vacinas Anticâncer , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Neoplasias Hematológicas/terapia , Humanos , Transplante Autólogo
2.
Dev Dyn ; 243(5): 640-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24868594

RESUMO

BACKGROUND: Over the past decade, the Ste20-like kinase SLK, has been implicated in several signaling processes. SLK repression has been shown to impair cell cycle kinetics and inhibit FAK-mediated cell migration. Here, using a gene trapped allele, we have generated mice expressing a truncated form of the SLK kinase. RESULTS: Our results show that an SLK-LacZ fusion protein is expressed in embryonic stem cells and in embryos throughout development. We find that the SLK-LacZ fusion protein is less efficient at phosphorylating substrates resulting in reduced cell proliferation within the embryos and angiogenic defects in the placentae of the homozygous mutant animals at embryonic day (E) 12.5. This results in marked developmental defects and apoptotic lesions in the embryos by E14.5. CONCLUSIONS: Homozygotes expressing the SLK-LacZ fusion protein present with an embryonic lethal phenotype occurring between E12.5 and E14.5. Overall, we demonstrate a requirement for SLK kinase activity in the developing embryo and placenta.


Assuntos
Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/fisiologia , Placenta/enzimologia , Proteínas da Gravidez/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Embrião de Mamíferos/citologia , Feminino , Camundongos , Camundongos Transgênicos , Placenta/citologia , Gravidez , Proteínas da Gravidez/genética , Proteínas Serina-Treonina Quinases/genética
3.
Front Immunol ; 13: 1074740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601119

RESUMO

Access to commercial CD19 CAR-T cells remains limited even in wealthy countries like Canada due to clinical, logistical, and financial barriers related to centrally manufactured products. We created a non-commercial academic platform for end-to-end manufacturing of CAR-T cells within Canada's publicly funded healthcare system. We report initial results from a single-arm, open-label study to determine the safety and efficacy of in-house manufactured CD19 CAR-T cells (entitled CLIC-1901) in participants with relapsed/refractory CD19 positive hematologic malignancies. Using a GMP compliant semi-automated, closed process on the Miltenyi Prodigy, T cells were transduced with lentiviral vector bearing a 4-1BB anti-CD19 CAR transgene and expanded. Participants underwent lymphodepletion with fludarabine and cyclophosphamide, followed by infusion of non-cryopreserved CAR-T cells. Thirty participants with non-Hodgkin's lymphoma (n=25) or acute lymphoblastic leukemia (n=5) were infused with CLIC-1901: 21 males (70%), median age 66 (range 18-75). Time from enrollment to CLIC-1901 infusion was a median of 20 days (range 15-48). The median CLIC-1901 dose infused was 2.3 × 106 CAR-T cells/kg (range 0.13-3.6 × 106/kg). Toxicity included ≥ grade 3 cytokine release syndrome (n=2) and neurotoxicity (n=1). Median follow-up was 6.5 months. Overall response rate at day 28 was 76.7%. Median progression-free and overall survival was 6 months (95%CI 3-not estimable) and 11 months (95% 6.6-not estimable), respectively. This is the first trial of in-house manufactured CAR-T cells in Canada and demonstrates that administering fresh CLIC-1901 product is fast, safe, and efficacious. Our experience may provide helpful guidance for other jurisdictions seeking to create feasible and sustainable CAR-T cell programs in research-oriented yet resource-constrained settings. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03765177, identifier NCT03765177.


Assuntos
Neoplasias Hematológicas , Linfoma não Hodgkin , Masculino , Humanos , Idoso , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Ciclofosfamida , Neoplasias Hematológicas/terapia , Recidiva , Antígenos CD19
4.
Mol Oncol ; 5(6): 517-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22075057

RESUMO

Focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase and scaffold protein localized to focal adhesions, is uniquely positioned at the convergence point of integrin and receptor tyrosine kinase signal transduction pathways. FAK is overexpressed in many tumor cells, hence various inhibitors targeting its activity have been tested for anti-tumor activity. However, the direct effects of these pharmacologic agents on the endothelial cells of the vasculature have not been examined. Using primary human umbilical vein endothelial cells (HUVEC), we characterized the effects of two FAK inhibitors, PF-573,228 and FAK Inhibitor 14 on essential processes for angiogenesis, such as migration, proliferation, viability and endothelial cell tube formation. We observed that treatment with either FAK Inhibitor 14 or PF-573,228 resulted in reduced HUVEC viability, migration and tube formation in response to vascular endothelial growth factor (VEGF). Furthermore, we found that PF-573,228 had the added ability to induce apoptosis of endothelial cells within 36 h post-drug administration even in the continued presence of VEGF stimulation. FAK inhibitors also resulted in modification of the actin cytoskeleton within HUVEC, with observed increased stress fiber formation in the presence of drug. Given that endothelial cells were sensitive to FAK inhibitors at concentrations well below those reported to inhibit tumor cell migration, we confirmed their ability to inhibit endothelial-derived FAK autophosphorylation and FAK-mediated phosphorylation of recombinant paxillin at these doses. Taken together, our data indicate that small molecule inhibitors of FAK are potent anti-angiogenic agents and suggest their utility in combinatorial therapeutic approaches targeting tumor angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA