Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(11): 229, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874400

RESUMO

KEY MESSAGE: Sedimentation values and falling number in the last decades have helped maintain high baking quality despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation values and falling number in European wheat. Zeleny sedimentation values (ZSV) and Hagberg-Perten falling number (HFN) are among the most important parameters that help determine the baking quality classes of wheat and, thus, influence the monetary benefits for growers. We used a published data set of 372 European wheat varieties evaluated in replicated field trials in multiple environments. ZSV and HFN traits hold a wide and significant genotypic variation and high broad-sense heritability. The genetic correlations revealed positive and significant associations of ZSV and HFN with each other, grain protein content (GPC) and grain hardness; however, they were all significantly negatively correlated with grain yield. Besides, GPC appeared to be the major predictor for ZSV and HFN. Our genome-wide association analyses based on high-quality SSR, SNP, and candidate gene markers revealed a strong quantitative genetic nature of ZSV and HFN by explaining their total genotypic variance as 41.49% and 38.06%, respectively. The association of known Glutenin (Glu-1) and Puroindoline (Pin-1) with ZSV provided positive analytic proof of our studies. We report novel candidate loci associated with globulins and albumins-the non-gluten monomeric proteins in wheat. In addition, predictive breeding analyses for ZSV and HFN suggest using genomic selection in the early stages of breeding programs with an average prediction accuracy of 81 and 59%, respectively.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Grãos , Triticum/genética , Melhoramento Vegetal , Alelos , Pão , Grão Comestível/genética
2.
Plant Biotechnol J ; 19(12): 2646-2661, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449959

RESUMO

The development of crop varieties that are resistant to lodging is a top priority for breeding programmes. Herein, we characterize the rye mutant ´Stabilstroh' ('stable straw') possessing an exceptional combination of high lodging resistance, tall posture and high biomass production. Nuclear magnetic resonance imaging displayed the 3-dimensional assembly of vascular bundles in stem. A higher number of vascular bundles and a higher degree of their incline were the features of lodging-resistant versus lodging-prone lines. Histology and electron microscopy revealed that stems are fortified by a higher proportion of sclerenchyma and thickened cell walls, as well as some epidermal invaginations. Biochemical analysis using Fourier-transform infrared spectroscopy and inductively coupled plasma-optical emission spectrometry further identified elevated levels of lignin, xylan, zinc and silicon as features associated with high lodging resistance. Combined effects of above features caused superior culm stability. A simplistic mathematical model showed how mechanical forces distribute within the stem under stress. Main traits of the lodging-resistant parental line were heritable and could be traced back to the genetic structure of the mutant. Evaluation of lodging-resistant wheat 'Babax' ('Baviacora') versus contrasting, lodging-prone, genotype ´Pastor´ agreed with above findings on rye. Our findings on mechanical stability and extraordinary culm properties may be important for breeders for the improvement of lodging resistance of tall posture cereal crops.


Assuntos
Secale , Triticum , Grão Comestível/metabolismo , Lignina/metabolismo , Melhoramento Vegetal/métodos , Secale/genética , Secale/metabolismo , Triticum/metabolismo
3.
J Exp Bot ; 72(18): 6305-6318, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34145452

RESUMO

A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correlations were found among the minerals except for K, which showed negative correlation trends with the other minerals. Genetic association analysis detected 86 significant marker-trait associations (MTAs) underlying the natural variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was annotated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform future breeding studies in order to improve human nutrition.


Assuntos
Minerais , Triticum , Estudos de Associação Genética , Nutrientes , Valor Nutritivo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
4.
Plant J ; 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906301

RESUMO

Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub-phases. These sub-phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub-phase durations, determined three grain yield-related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub-phase durations showed significant consistency (Mantel test; r = 0.5377, P < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome-wide association study suggested a close association between grain yield and sub-phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR-TS) and assimilate accumulation (green anther to anthesis stage, GA-AN). Moreover, we observed that the photoperiod-sensitivity allele at the Ppd-D1 locus on chromosome 2D markedly extended all sub-phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht-D1 (chromosome 4D) locus altered the sub-phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub-phases), rather than the entire stem elongation phase as a whole.

5.
Theor Appl Genet ; 132(11): 3035-3045, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377817

RESUMO

KEY MESSAGE: Novel large-effect consistent QTL for anther extrusion (AE) to improve cross-pollination were mapped in doubled haploid populations derived from IPK gene bank spring wheat accessions. TaAP2-D, an ortholog of Cleistogamy1 in barley, is a likely candidate gene for AE in wheat. To establish a robust hybrid wheat breeding system, male lines harboring alleles that promote outcrossing should be developed. In this study, we developed two doubled haploid (DH) populations of hexaploid spring wheat (Triticum aestivum L.) by crossing accessions taken from IPK gene bank. In both populations, the phenotypic data of anther extrusion (AE) based on three years of field trials showed a wide variation and approximated a normal distribution. Both populations were genotyped with a 15 k Infinium single nucleotide polymorphism (SNP) array resulting in 3567 and 3457 polymorphic SNP markers for DH population-1 and DH population-2, respectively. Composite interval mapping identified quantitative trait loci (QTL) on chromosomes 1D, 2D, 4A, 4B, 5A, 5D, 6A, and 6B; with consistent QTL (that are identified in all the years) on chromosome 4A in DH population-1, and on chromosomes 2D and 6B in DH population-2. The consistent QTL explained 17.2%, 32.9%, and 12.3% of the phenotypic variances, respectively. Genic scan of the chromosome 2D-QTL showed that the wheat gene TaAP2-D, an ortholog of Cleistogamy1 which promotes AE via swelling of the lodicules in barley, lies within the QTL region. A diagnostic marker was developed for TaAP2-D that showed co-segregation with the AE phenotype. This study shows the use of gene bank diversity reservoir to find alleles which are otherwise difficult to detect in elite populations. The identification of large-effect consistent QTL for AE is expected to help form efficient male parental lines suitable for hybrid wheat seed production and serve as a source for map-based cloning.


Assuntos
Flores/crescimento & desenvolvimento , Variação Genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Genética Populacional , Haploidia , Fenótipo
6.
Plant Biotechnol J ; 16(12): 2042-2052, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29723916

RESUMO

One of the primary objectives of wheat breeding was to increase grain yield. Floral abortion during the stem elongation phase (SEP) leads to a loss of more than 50% of the grain number potential. In this study, we quantified 75 plant growth-associated traits at seven stages during the SEP and mapped 15 696 single nucleotide polymorphism (SNP) markers in 210 accessions of wheat (Triticum aestivum). Our genomewide association study identified trait-associated SNPs that are shared among various stages of the SEP, as well as SNPs that are shared between plant growth traits and grain yield in the field. The genomic selection analysis shows variation among the prediction abilities of various traits and stages. Furthermore, we found that the allelic variants of Ppd-D1 (chromosome 2D) and Rht-D1 (chromosome 4D) loci affect some plant growth traits (e.g. leaf area and spike length). These results have identified a narrow time window within the SEP in which plant growth traits can be manipulated to alter grain yield. This suggests that there may be multiple ways to regulate plant growth during the SEP, to ultimately influence grain number in wheat.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Triticum/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Caules de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento
7.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585193

RESUMO

Malnutrition of iron (Fe) affects two billion people worldwide. Therefore, enhancing grain Fe concentration (GFeC) in wheat (Triticum aestivum L.) is an important goal for breeding. Here we study the genetic factors underlying GFeC trait by genome-wide association studies (GWAS) and the prediction abilities using genomic prediction (GP) in a panel of 369 European elite wheat varieties which was genotyped with 15,523 mapped single-nucleotide polymorphism markers (SNP) and a subpanel of 183 genotypes with 44,233 SNP markers. The resulting means of GFeC from three field experiments ranged from 24.42 to 52.42 µg·g-1 with a broad-sense heritability (H²) equaling 0.59 over the years. GWAS revealed 41 and 137 significant SNPs in the whole and subpanel, respectively, including significant marker-trait associations (MTAs) for best linear unbiased estimates (BLUEs) of GFeC on chromosomes 2A, 3B and 5A. Putative candidate genes such as NAC transcription factors and transmembrane proteins were present on chromosome 2A (763,689,738⁻765,710,113 bp). The GP for a GFeC trait ranged from low to moderate values. The current study reported GWAS of GFeC for the first time in hexaploid wheat varieties. These findings confirm the utility of GWAS and GP to explore the genetic architecture of GFeC for breeding programs aiming at the improvement of wheat grain quality.


Assuntos
Genoma de Planta , Ferro/metabolismo , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Ferro/análise , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Espectrofotometria Atômica
8.
New Phytol ; 214(1): 257-270, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27918076

RESUMO

Increasing grain yield is still the main target of wheat breeding; yet today's wheat plants utilize less than half of their yield potential. Owing to the difficulty of determining grain yield potential in a large population, few genetic factors regulating floret fertility (i.e. the difference between grain yield potential and grain number) have been reported to date. In this study, we conducted a genome-wide association study (GWAS) by quantifying 54 traits (16 floret fertility traits and 38 traits for assimilate partitioning and spike morphology) in 210 European winter wheat accessions. The results of this GWAS experiment suggested potential associations between floret fertility, assimilate partitioning and spike morphology revealed by shared quantitative trait loci (QTLs). Several candidate genes involved in carbohydrate metabolism, phytohormones or floral development colocalized with such QTLs, thereby providing potential targets for selection. Based on our GWAS results we propose a genetic network underlying floret fertility and related traits, nominating determinants for improved yield performance.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Triticum/genética , Triticum/fisiologia , Fertilidade , Pleiotropia Genética , Genética Populacional , Fenótipo , Triticum/anatomia & histologia
9.
J Exp Bot ; 68(15): 4089-4101, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922760

RESUMO

Grain yield (GY) of bread wheat (Triticum aestivum L.) is quantitatively inherited. Correlated GY-syndrome traits such as plant height (PH), heading date (HD), thousand grain weight (TGW), test weight (TW), grains per ear (GPE), and ear weight (EW) influence GY. Most quantitative genetics studies assessed the multiple-trait (MT) complex of GY-syndrome using single-trait approaches, and little is known about its underlying pleiotropic architecture. We investigated the pleiotropic architecture of wheat GY-syndrome through MT association mapping (MT-GWAS) using 372 varieties phenotyped in up to eight environments and genotyped with 18 832 single nucleotide polymorphisms plus 24 polymorphic functional markers. MT-GWAS revealed a total of 345 significant markers spread genome wide, representing 8, 40, 11, 40, 34, and 35 effective GY-PH, GY-HD, GY-TGW, GY-TW, GY-GPE, and GY-EW associations, respectively. Among them, pleiotropic roles of Rht-B1 and TaGW2-6B loci were corroborated. Only one marker presented simultaneous associations for three traits (i.e. GY-TGW-TW). Close linkage was difficult to differentiate from pleiotropy; thus, the pleiotropic architecture of GY-syndrome was dissected more as a cause of pleiotropy rather than close linkage. Simulations showed that minor allele frequencies, along with sizes and distances between quantitative trait loci for two traits, influenced the ability to distinguish close linkage from pleiotropy.


Assuntos
Ligação Genética , Pleiotropia Genética , Fenótipo , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
10.
Theor Appl Genet ; 130(3): 505-514, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27866227

RESUMO

KEY MESSAGE: Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Ascomicetos , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
11.
Theor Appl Genet ; 130(3): 471-482, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858103

RESUMO

KEY MESSAGE: Compared with independent validation, cross-validation simultaneously sampling genotypes and environments provided similar estimates of accuracy for genomic selection, but inflated estimates for marker-assisted selection. Estimates of prediction accuracy of marker-assisted (MAS) and genomic selection (GS) require validations. The main goal of our study was to compare the prediction accuracies of MAS and GS validated in an independent sample with results obtained from fivefold cross-validation using genomic and phenotypic data for Fusarium head blight resistance in wheat. In addition, the applicability of the reliability criterion, a concept originally developed in the context of classic animal breeding and GS, was explored for MAS. We observed that prediction accuracies of MAS were overestimated by 127% using cross-validation sampling genotype and environments in contrast to independent validation. In contrast, prediction accuracies of GS determined in independent samples are similar to those estimated with cross-validation sampling genotype and environments. This can be explained by small population differentiation between the training and validation sets in our study. For European wheat breeding, which is so far characterized by a slow temporal dynamic in allele frequencies, this assumption seems to be realistic. Thus, GS models used to improve European wheat populations are expected to possess a long-lasting validity. Since quantitative trait loci information can be exploited more precisely if the predicted genotype is more related to the training population, the reliability criterion is also a valuable tool to judge the level of prediction accuracy of individual genotypes in MAS.


Assuntos
Resistência à Doença/genética , Genômica/métodos , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Fusarium , Frequência do Gene , Marcadores Genéticos , Genótipo , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Triticum/microbiologia
12.
BMC Genet ; 14: 97, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088365

RESUMO

BACKGROUND: Flavonoids are an important class of secondary compounds in angiosperms. Next to certain biological functions in plants, they play a role in the brewing process and have an effect on taste, color and aroma of beer. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters. RESULTS: Five genes encoding phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H) and dihydroflavonol reductase (DFR) of the phenylpropanoid biosynthesis pathway were partially resequenced in 16 diverse barley reference genotypes. Their localization in the barley genome, their genetic structure, and their genetic variation e.g. single nucleotide polymorphism (SNP) and Insertion/Deletion (InDel) patterns were revealed. In total, 130 SNPs and seven InDels were detected. Of these, 21 polymorphisms were converted into high-throughput pyrosequencing markers. The resulting SNP and haplotype patterns were used to calculate associations with kernel and malting quality parameters. CONCLUSIONS: SNP patterns were found to be highly variable for the investigated genes. The developed high-throughput markers are applicable for assessing the genetic variability and for the determination of haplotype patterns in a set of barley accessions. The candidate genes PAL, C4H and F3H were shown to be associated to several malting properties like glassiness (PAL), viscosity (C4H) or to final attenuation (F3H).


Assuntos
Genes de Plantas , Marcadores Genéticos/genética , Hordeum/genética , Polimorfismo de Nucleotídeo Único , Aciltransferases/genética , Oxirredutases do Álcool/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Flavonoides/biossíntese , Deleção de Genes , Variação Genética , Genótipo , Haplótipos , Hordeum/metabolismo , Oxigenases de Função Mista/genética , Mutagênese Insercional , Fenilalanina Amônia-Liase/genética , Transcinamato 4-Mono-Oxigenase/genética
13.
BMC Genet ; 14: 77, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007272

RESUMO

BACKGROUND: Several studies report about intra-specific trait variation of nitrogen-metabolism related traits, such as N(itrogen)-use efficiency, protein content, N-storage and remobilization in barley and related grass species. The goal of this study was to assess the intra-specific genetic diversity present in primary N-metabolism genes of barley and to investigate the associations of the detected haplotype diversity with malting and kernel quality related traits. RESULTS: Partial sequences of five genes related to N-metabolism in barley (Hordeum vulgare L.) were obtained, i.e. nitrate reductase 1, glutamine synthetase 2, ferredoxin-dependent glutamate synthase, aspartate aminotransferase and asparaginase. Two to five haplotypes in each gene were discovered in a set of 190 various varieties. The development of 33 SNP markers allowed the genotyping of all these barley varieties consisting of spring and winter types. Furthermore, these markers could be mapped in several doubled haploid populations. Cluster analysis based on haplotypes revealed a more uniform pattern of the spring barleys as compared to the winter barleys. Based on linear model approaches associations to several malting and kernel quality traits including soluble N and protein were identified. CONCLUSIONS: A study was conducted to investigate the presence of sequence variation of several genes related to the primary N-metabolism in barley. The detected diversity could be related to particular phenotypic traits. Specific differences between spring and winter barleys most likely reflect different breeding aims. The developed markers can be used as tool for further genetic studies and marker-assisted selection during breeding of barley.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Variação Genética , Hordeum/genética , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Aminoácido Oxirredutases/genética , Asparaginase/genética , Aspartato Aminotransferases/genética , Análise por Conglomerados , Genótipo , Glutamato-Amônia Ligase/genética , Haplótipos , Hordeum/química , Hordeum/enzimologia , Desequilíbrio de Ligação , Nitrato Redutase/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estações do Ano , Sementes
14.
Sci Rep ; 13(1): 5916, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041155

RESUMO

Cereal cyst nematode (CCN) is a major threat to cereal crop production globally including wheat (Triticum aestivum L.). In the present study, single-locus and multi-locus models of Genome-Wide Association Study (GWAS) were used to find marker trait associations (MTAs) against CCN (Heterodera avenae) in wheat. In total, 180 wheat accessions (100 spring and 80 winter types) were screened against H. avenae in two independent years (2018/2019 "Environment 1" and 2019/2020 "Environment 2") under controlled conditions. A set of 12,908 SNP markers were used to perform the GWAS. Altogether, 11 significant MTAs, with threshold value of -log10 (p-values) ≥ 3.0, were detected using 180 wheat accessions under combined environment (CE). A novel MTA (wsnp_Ex_c53387_56641291) was detected under all environments (E1, E2 and CE) and considered to be stable MTA. Among the identified 11 MTAs, eight were novel and three were co-localized with previously known genes/QTLs/MTAs. In total, 13 putative candidate genes showing differential expression in roots, and known to be involved in plant defense mechanisms were reported. These MTAs could help us to identify resistance alleles from new sources, which could be used to identify wheat varieties with enhanced CCN resistance.


Assuntos
Cistos , Nematoides , Animais , Triticum/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genômica , Nematoides/genética
15.
Nutrients ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37892473

RESUMO

Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.


Assuntos
Proteínas de Grãos , Triticum , Humanos , Triticum/química , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Proteínas de Grãos/metabolismo , Proteômica
16.
Theor Appl Genet ; 124(5): 911-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22159825

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F(2) progenies and F(6) recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F(2) mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F(6) RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F(2) population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos
17.
Theor Appl Genet ; 125(3): 561-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476874

RESUMO

High temperature (>30 °C) at the time of grain filling is one of the major causes of yield reduction in wheat in many parts of the world, especially in tropical countries. To identify quantitative trait loci (QTL) for heat tolerance under terminal heat stress, a set of 148 recombinant inbred lines was developed by crossing a heat-tolerant hexaploid wheat (Triticum aestivum L.) cultivar (NW1014) and a heat-susceptible (HUW468) cultivar. The F(5), F(6), and F(7) generations were evaluated in two different sowing dates under field conditions for 2 years. Using the trait values from controlled and stressed trials, four different traits (1) heat susceptibility index (HSI) of thousand grain weight (HSITGW); (2) HSI of grain fill duration (HSIGFD); (3) HSI of grain yield (HSIYLD); and (4) canopy temperature depression (CTD) were used to determine heat tolerance. Days to maturity was also investigated. A linkage map comprising 160 simple sequence repeat markers was prepared covering the whole genome of wheat. Using composite interval mapping, significant genomic regions on 2B, 7B and 7D were found to be associated with heat tolerance. Of these, two (2B and 7B) were co-localized QTL and explained more than 15 % phenotypic variation for HSITGW, HSIGFD and CTD. In pooled analysis over three trials, QTL explained phenotypic variation ranging from 9.78 to 20.34 %. No QTL × trial interaction was detected for the identified QTL. The three major QTL obtained can be used in marker-assisted selection for heat stress in wheat.


Assuntos
Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Genoma de Planta , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/isolamento & purificação , Ligação Genética , Genótipo , Temperatura Alta , Repetições de Microssatélites , Fenótipo
18.
Int J Radiat Biol ; 98(7): 1289-1300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34855571

RESUMO

Hypothesis: The anthropogenic effects can be manifested in a decrease in genetic diversity and the population differentiation, and increase in the frequencies of rare and/or private alleles.Materials and methods: We have selected a collection of primers for B. inermis, consisting of 21 microsatellite loci from B. sterilis, B. tectorum and Triticum aestivum.Results: Only 38% of SSR primers showed good transferability and were used for B. inermis population studies from technogenic pollution areas. We revealed 42 alleles at eight loci, and the number of alleles per locus varied from one to 13 per populations. The percentage of polymorphic loci in B. inermis populations was 48.44%. A total of 22 rare, 14 private and 9 both rare and private alleles were reported. There were no correlations between geographic and genetic distances. Only 6.8% of the genetic variability was distributed among B. inermis populations.Conclusion: There was no decrease in genetic diversity found in B. inermis populations growing under anthropogenic stress. No significant differences in the number of rare and private alleles in the background and impact populations of B. inermis were found. The smooth brome is characterized by low differentiation of the populations. Possible reasons for this phenomenon are discussed.


Assuntos
Bromus , Repetições de Microssatélites , Alelos , Bromus/genética , Variação Genética , Repetições de Microssatélites/genética , Filogenia
19.
Sci Data ; 9(1): 538, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056030

RESUMO

In plant sciences, curation and availability of interoperable phenotypic and genomic data is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. To that end, supplementing the efforts being made to generate open access wheat genome, pan wheat genome and other bioinformatic resources, we present the GABI-WHEAT panel of elite European cultivars comprising 358 winter and 14 summer wheat varieties released between 1975 to 2007. The panel has been genotyped with SNP arrays of increasing density to investigate several important agronomic, quality and disease resistance traits. The robustness of investigated traits and interoperability of genomic and phenotypic data was assessed in the current publication with the aim to transform this panel into a public data resource for future genetic research in wheat. Consecutively, the phenotypic data was formatted to comply with FAIR principles and linked to online databases to substantiate panel origin information and quality. Thus, we were able to make a valuable resource available for plant science in a sustainable way.


Assuntos
Triticum , Pesquisa em Genética , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética
20.
Sci Rep ; 12(1): 9586, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688926

RESUMO

The resistance to cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.) was studied using 114 doubled haploid lines from a novel ITMI mapping population. These lines were screened for nematode infestation in a controlled environment for two years. QTL-mapping analyses were performed across two years (Y1 and Y2) as well as combining two years (CY) data. On the 114 lines that were screened, a total of 2,736 data points (genotype, batch or years, and replication combinations) were acquired. For QTL analysis, 12,093 markers (11,678 SNPs and 415 SSRs markers) were used, after filtering the genotypic data, for the QTL mapping. Composite interval mapping, using Haley-Knott regression (hk) method in R/QTL, was used for QTL analysis. In total, 19 QTLs were detected out of which 13 were novel and six were found to be colocalized or nearby to previously reported Cre genes, QTLs or MTAs for H. avenae or H. filipjevi. Nine QTLs were detected across all three groups (Y1, Y2 and CY) including a significant QTL "QCcn.ha-2D" on chromosome 2D that explains 23% of the variance. This QTL colocalized with a previously identified Cre3 locus. Novel QTL, QCcn.ha-2A, detected in the present study could be the possible unreported homeoloci to QCcn.ha-2D, QCcn.ha-2B.1 and QCcn.ha-2B.2. Six significant digenic epistatic interactions were also observed. In addition, 26 candidate genes were also identified including genes known for their involvement in PPNs (plant parasitic nematodes) resistance in different plant species. In-silico expression of putative candidate genes showed differential expression in roots during specific developmental stages. Results obtained in the present study are useful for wheat breeding to generate resistant genetic resources against H. avenae.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/parasitologia , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA