Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Cell ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484126

RESUMO

F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.

2.
Plant Cell ; 35(1): 488-509, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250886

RESUMO

Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-ß subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.


Assuntos
Arabidopsis , ATPases de Cloroplastos Translocadoras de Prótons , Proteínas das Membranas dos Tilacoides , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotossíntese/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo
3.
Plant Physiol ; 182(3): 1222-1238, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31937683

RESUMO

Biogenesis of plastid ribosomes is facilitated by auxiliary factors that process and modify ribosomal RNAs (rRNAs) or are involved in ribosome assembly. In comparison with their bacterial and mitochondrial counterparts, the biogenesis of plastid ribosomes is less well understood, and few auxiliary factors have been described so far. In this study, we report the functional characterization of CONSERVED ONLY IN THE GREEN LINEAGE20 (CGL20) in Arabidopsis (Arabidopsis thaliana; AtCGL20), which is a Pro-rich, ∼10-kD protein that is targeted to mitochondria and chloroplasts. In Arabidopsis, CGL20 is encoded by segmentally duplicated genes of high sequence similarity (AtCGL20A and AtCGL20B). Inactivation of these genes in the atcgl20ab mutant led to a visible virescent phenotype and growth arrest at low temperature. The chloroplast proteome, pigment composition, and photosynthetic performance were significantly affected in atcgl20ab mutants. Loss of AtCGL20 impaired plastid translation, perturbing the formation of a hidden break in the 23S rRNA and causing abnormal accumulation of 50S ribosomal subunits in the high-molecular-mass fraction of chloroplast stromal extracts. Moreover, AtCGL20A-eGFP fusion proteins comigrated with 50S ribosomal subunits in Suc density gradients, even after RNase treatment of stromal extracts. Therefore, we propose that AtCGL20 participates in the late stages of the biogenesis of 50S ribosomal subunits in plastids, a role that presumably evolved in the green lineage as a consequence of structural divergence of plastid ribosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ribossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética
4.
J Exp Bot ; 72(13): 4904-4914, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33872351

RESUMO

The processing of chloroplast RNA requires a large number of nuclear-encoded RNA-binding proteins (RBPs) that are imported post-translationally into the organelle. The chloroplast ribonucleoprotein 31A (CP31A) supports RNA editing at 13 sites and also supports the accumulation of multiple chloroplast mRNAs. In cp31a mutants it is the ndhF mRNA (coding for a subunit of the NDH complex) that is most strongly affected. CP31A becomes particularly important at low temperatures, where it is essential for chloroplast development in young tissue. Next to two RNA-recognition motifs (RRMs), CP31A has an N-terminal acidic domain that is phosphorylated at several sites. We investigated the function of the acidic domain in the role of CP31A in RNA metabolism and cold resistance. Using point mutagenesis, we demonstrate that the known phosphorylation sites within the acidic domain are irrelevant for any of the known functions of CP31A, both at normal and at low temperatures. Even when the entire acidic domain is removed, no effects on RNA editing were observed. By contrast, loss of the acidic domain reduced the ability of CP31A to stabilize the ndhF mRNA, which was associated with reduced NDH complex activity. Most importantly, acidic domain-less CP31A lines displayed bleached young tissue in the cold. Together, these data show that the different functions of CP31A can be assigned to different regions of the protein: the RRMs are sufficient to maintain RNA editing and to allow the accumulation of basal amounts of ndhF mRNA, while chloroplast development under cold conditions critically depends on the acidic domain.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA de Cloroplastos , Proteínas de Ligação a RNA/genética
5.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781615

RESUMO

Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Cloroplastos/metabolismo , NADPH Desidrogenase/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
6.
Plant Cell ; 28(4): 892-910, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27020959

RESUMO

In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn(2+) and Ca(2+) homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn(2+) and Ca(2+) ions were differently sequestered in pam71, with Ca(2+) enriched in pam71 thylakoids relative to the wild type. The changes in Ca(2+) homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn(2+), but not Ca(2+) Furthermore, PAM71 suppressed the Mn(2+)-sensitive phenotype of the yeast mutant Δpmr1 Therefore, PAM71 presumably functions in Mn(2+) uptake into thylakoids to ensure optimal PSII performance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Manganês/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Cálcio/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo
7.
Biochim Biophys Acta ; 1847(9): 849-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25667968

RESUMO

F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/química , Cloroplastos/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/fisiologia
8.
Photosynth Res ; 129(3): 231-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26781235

RESUMO

Cyclic electron flow has puzzled and divided the field of photosynthesis researchers for decades. This mainly concerns the proportion of its overall contribution to photosynthesis, as well as its components and molecular mechanism. Yet, it is irrefutable that the absence of cyclic electron flow has severe effects on plant growth. One of the two pathways mediating cyclic electron flow can be inhibited by antimycin A, a chemical that has also widely been used to characterize the mitochondrial respiratory chain. For the characterization of cyclic electron flow, antimycin A has been used since 1963, when ferredoxin was found to be the electron donor of the pathway. In 2013, antimycin A was used to identify the PGRL1/PGR5 complex as the ferredoxin:plastoquinone reductase completing the last puzzle piece of this pathway. The controversy has not ended, and here, we review the history of research on this process using the perspective of antimycin A as a crucial chemical for its characterization.


Assuntos
Antimicina A/farmacologia , Ferredoxinas/metabolismo , Fotossíntese/efeitos dos fármacos , Plantas/efeitos dos fármacos , Quinona Redutases/metabolismo , Antimicina A/química , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
9.
Plant Cell ; 25(10): 3926-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096342

RESUMO

In vascular plants, the chloroplast NAD(P)H dehydrogenase complex (NDH-C) is assembled from five distinct subcomplexes, the membrane-spanning (subM) and the luminal (subL) subcomplexes, as well as subA, subB, and subE. The assembly process itself is poorly understood. Vascular plant genomes code for two related intrinsic thylakoid proteins, photosynthesis-affected mutant68 (PAM68), a photosystem II assembly factor, and photosynthesis-affected mutant68-like (PAM68L). As we show here, inactivation of Arabidopsis thaliana PAM68L in the pam68l-1 mutant identifies PAM68L as an NDH-C assembly factor. The mutant lacks functional NDH holocomplexes and accumulates three distinct NDH-C assembly intermediates (subB, subM, and subA+L), which are also found in mutants defective in subB assembly (ndf5) or subM expression (chlororespiratory reduction4-3 mutant). NDH-C assembly in the cyanobacterium Synechocystis sp PCC 6803 and the moss Physcomitrella patens does not require PAM68 proteins, as demonstrated by the analysis of knockout lines for the single-copy PAM68 genes in these species. We conclude that PAM68L mediates the attachment of subB- and subM-containing intermediates to a complex that contains subA and subL. The evolutionary appearance of subL and PAM68L during the transition from mosses like P. patens to flowering plants suggests that the associated increase in the complexity of the NDH-C might have been facilitated by the recruitment of evolutionarily novel assembly factors like PAM68L.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , NADPH Desidrogenase/metabolismo , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/metabolismo , Proteínas de Cloroplastos/genética , NADPH Desidrogenase/genética , Filogenia , Synechocystis/metabolismo
10.
Plant Physiol ; 165(1): 207-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664203

RESUMO

The chloroplast F1Fo-ATP synthase/ATPase (cpATPase) couples ATP synthesis to the light-driven electrochemical proton gradient. The cpATPase is a multiprotein complex and consists of a membrane-spanning protein channel (comprising subunit types a, b, b', and c) and a peripheral domain (subunits α, ß, γ, δ, and ε). We report the characterization of the Arabidopsis (Arabidopsis thaliana) CONSERVED ONLY IN THE GREEN LINEAGE160 (AtCGL160) protein (AtCGL160), conserved in green algae and plants. AtCGL160 is an integral thylakoid protein, and its carboxyl-terminal portion is distantly related to prokaryotic ATP SYNTHASE PROTEIN1 (Atp1/UncI) proteins that are thought to function in ATP synthase assembly. Plants without AtCGL160 display an increase in xanthophyll cycle activity and energy-dependent nonphotochemical quenching. These photosynthetic perturbations can be attributed to a severe reduction in cpATPase levels that result in increased acidification of the thylakoid lumen. AtCGL160 is not an integral cpATPase component but is specifically required for the efficient incorporation of the c-subunit into the cpATPase. AtCGL160, as well as a chimeric protein containing the amino-terminal part of AtCGL160 and Synechocystis sp. PCC6803 Atp1, physically interact with the c-subunit. We conclude that AtCGL160 and Atp1 facilitate the assembly of the membranous part of the cpATPase in their hosts, but loss of their functions provokes a unique compensatory response in each organism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Membranas Intracelulares/enzimologia , Proteínas das Membranas dos Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Clorofila A , DNA Bacteriano/genética , Transporte de Elétrons , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Termodinâmica , Proteínas das Membranas dos Tilacoides/química , Tilacoides/metabolismo , Transcrição Gênica
11.
Microb Cell Fact ; 13: 4, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401024

RESUMO

BACKGROUND: The cyanobacterium Synechocystis sp. PCC 6803 is widely used for research on photosynthesis and circadian rhythms, and also finds application in sustainable biotechnologies. Synechocystis is naturally transformable and undergoes homologous recombination, which enables the development of a variety of tools for genetic and genomic manipulations. To generate multiple gene deletions and/or replacements, marker-less manipulation methods based on counter-selection are generally employed. Currently available methods require two transformation steps with different DNA plasmids. RESULTS: In this study, we present a marker-less gene deletion and replacement strategy in Synechocystis sp. PCC 6803 which needs only a single transformation step. The method utilizes an nptI-sacB double selection cassette and exploits the ability of the cyanobacterium to undergo two successive genomic recombination events via double and single crossing-over upon application of appropriate selective procedures. CONCLUSIONS: By reducing the number of cloning steps, this strategy will facilitate gene manipulation, gain-of-function studies, and automated screening of mutants.


Assuntos
Engenharia Genética/métodos , Vetores Genéticos/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vetores Genéticos/genética , Recombinação Homóloga
12.
Plant Cell ; 22(10): 3439-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20923938

RESUMO

Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Alinhamento de Sequência , Synechocystis/genética , Synechocystis/metabolismo , Tilacoides/genética
13.
J Plant Physiol ; 290: 154103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788546

RESUMO

Plastocyanin functions as an electron carrier in the photosynthetic electron transport chain, located at the thylakoid membrane. In several species, endogenous plastocyanin levels are correlated with the photosynthetic electron transport rate. Overexpression of plastocyanin genes in Arabidopsis thaliana increases plant size, but this phenomenon has not been observed in crop species. Here, we investigated the effects of heterologous expression of a gene encoding a plastocyanin isoform from Arabidopsis, AtPETE2, in the oil seed crop Camelina sativa under standard growth conditions and under salt stress. AtPETE2 heterologous expression enhanced photosynthetic activity in Camelina, accelerating plant development and improving seed yield under standard growth conditions. Additionally, CsPETE2 from Camelina was induced by salt stress and AtPETE2 expression lines had larger primary roots and more lateral roots than the wild type. AtPETE2 expression lines also had larger seeds and higher total seed yield under long-term salt stress compared with non-transgenic Camelina. Our results demonstrate that increased plastocyanin levels in Camelina can enhance photosynthesis and productivity, as well as tolerance to osmotic and salt stresses. Heterologous expression of plastocyanin may be a useful strategy to mitigate crop stress in saline soils.


Assuntos
Arabidopsis , Brassicaceae , Plastocianina/genética , Plastocianina/metabolismo , Tolerância ao Sal/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Sementes/metabolismo
14.
Nat Commun ; 14(1): 3023, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230969

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major catalyst in the conversion of carbon dioxide into organic compounds in photosynthetic organisms. However, its activity is impaired by binding of inhibitory sugars such as xylulose-1,5-bisphosphate (XuBP), which must be detached from the active sites by Rubisco activase. Here, we show that loss of two phosphatases in Arabidopsis thaliana has detrimental effects on plant growth and photosynthesis and that this effect could be reversed by introducing the XuBP phosphatase from Rhodobacter sphaeroides. Biochemical analyses revealed that the plant enzymes specifically dephosphorylate XuBP, thus allowing xylulose-5-phosphate to enter the Calvin-Benson-Bassham cycle. Our findings demonstrate the physiological importance of an ancient metabolite damage-repair system in degradation of by-products of Rubisco, and will impact efforts to optimize carbon fixation in photosynthetic organisms.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Carbono/metabolismo
15.
J Exp Bot ; 63(3): 1251-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22090436

RESUMO

The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have distinct functions. It is shown here that CSP41b, but not CSP41a, is an essential and major component of a specific subset of RNA-binding complexes that form in the dark and disassemble in the light. RNA immunoprecipitation and hybridization to gene chips (RIP-chip) experiments indicated that CSP41 complexes can contain chloroplast mRNAs coding for photosynthetic proteins and rRNAs (16S and 23S), but no tRNAs or mRNAs for ribosomal proteins. Leaves of plants lacking CSP41b showed decreased steady-state levels of CSP41 target RNAs, as well as decreased plastid transcription and translation rates. Representative target RNAs were less stable when incubated with broken chloroplasts devoid of CSP41 complexes, indicating that CSP41 proteins can stabilize target RNAs. Therefore, it is proposed that (i) CSP41 complexes may serve to stabilize non-translated target mRNAs and precursor rRNAs during the night when the translational machinery is less active in a manner responsive to the redox state of the chloroplast, and (ii) that the defects in translation and transcription in CSP41 protein-less mutants are secondary effects of the decreased transcript stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Plastídeos/genética , RNA de Cloroplastos/metabolismo , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , RNA de Cloroplastos/genética , RNA de Plantas/genética
16.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204867

RESUMO

Non-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, Arabidopsis thaliana plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions. Conversely, the NADPH-dependent thioredoxin reductase C (NTRC) is required for efficient energy utilization and plant growth, and in its absence, transient and steady-state NPQ is drastically increased. How NTRC influences NPQ and functionally interacts with CEF is unclear. Therefore, we generated the A. thaliana line pgr5 ntrc, and found that the inactivation of PGR5 suppresses the high transient and steady-state NPQ and impaired growth phenotypes observed in the ntrc mutant under short-day conditions. This implies that NTRC negatively influences PGR5 activity and, accordingly, the lack of NTRC is associated with decreased levels of PGR5, possibly pointing to a mechanism to restrict upregulation of PGR5 activity in the absence of NTRC. When exposed to high light intensities, pgr5 ntrc plants display extremely impaired photosynthesis and growth, indicating additive effects of lack of both proteins. Taken together, these findings suggest that the interplay between NTRC and PGR5 is relevant for photoprotection and that NTRC might regulate PGR5 activity.

17.
Nat Commun ; 12(1): 3941, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168134

RESUMO

In plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Antimicina A/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Luz , Proteínas de Membrana/genética , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica
18.
Front Plant Sci ; 12: 699424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295345

RESUMO

Lutein, made by the α-branch of the methyl-erythritol phosphate (MEP) pathway, is one of the most abundant xanthophylls in plants. It is involved in the structural stabilization of light-harvesting complexes, transfer of excitation energy to chlorophylls and photoprotection. In contrast, lutein and the α-branch of the MEP pathway are not present in cyanobacteria. In this study, we genetically engineered the cyanobacterium Synechocystis for the missing MEP α-branch resulting in lutein accumulation. A cassette comprising four Arabidopsis thaliana genes coding for two lycopene cyclases (AtLCYe and AtLCYb) and two hydroxylases (AtCYP97A and AtCYP97C) was introduced into a Synechocystis strain that lacks the endogenous, cyanobacterial lycopene cyclase cruA. The resulting synlut strain showed wild-type growth and only moderate changes in total pigment composition under mixotrophic conditions, indicating that the cruA deficiency can be complemented by Arabidopsis lycopene cyclases leaving the endogenous ß-branch intact. A combination of liquid chromatography, UV-Vis detection and mass spectrometry confirmed a low but distinct synthesis of lutein at rates of 4.8 ± 1.5 nmol per liter culture at OD730 (1.03 ± 0.47 mmol mol-1 chlorophyll). In conclusion, synlut provides a suitable platform to study the α-branch of the plastidic MEP pathway and other functions related to lutein in a cyanobacterial host system.

19.
BMC Plant Biol ; 8: 107, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18928519

RESUMO

BACKGROUND: Sealed Chlamydomonas reinhardtii cultures evolve significant amounts of hydrogen gas under conditions of sulfur depletion. However, the eukaryotic green alga goes through drastic metabolic changes during this nutritional stress resulting in cell growth inhibition and eventually cell death. This study aimed at isolating C. reinhardtii transformants which produce hydrogen under normal growth conditions to allow a continuous hydrogen metabolism without the stressful impact of nutrient deprivation. RESULTS: To achieve a steady photobiological hydrogen production, a screening protocol was designed to identify C. reinhardtii DNA insertional mutagenesis transformants with an attenuated photosynthesis to respiration capacity ratio (P/R ratio). The screening protocol entails a new and fast method for mutant strain selection altered in their oxygen production/consumption balance. Out of 9000 transformants, four strains with P/R ratios varying from virtually zero to three were isolated. Strain apr1 was found to have a slightly higher respiration rate and a significantly lower photosynthesis rate than the wild type. Sealed cultures of apr1 became anaerobic in normal growth medium (TAP) under moderate light conditions and induced [FeFe]-hydrogenase activity, yet without significant hydrogen gas evolution. However, Calvin-Benson cycle inactivation of anaerobically adapted apr1 cells in the light led to a 2-3-fold higher in vivo hydrogen production than previously reported for the sulfur-deprived C. reinhardtii wild type. CONCLUSION: Attenuated P/R capacity ratio in microalgal mutants constitutes a platform for achieving steady state photobiological hydrogen production. Using this platform, algal hydrogen metabolism can be analyzed without applying nutritional stress. Furthermore, these strains promise to be useful for biotechnological hydrogen generation, since high in vivo hydrogen production rates are achievable under normal growth conditions, when the photosynthesis to respiration capacity ratio is lowered in parallel to down regulated assimilative pathways.


Assuntos
Chlamydomonas reinhardtii/isolamento & purificação , Hidrogênio/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/farmacologia , Anaerobiose , Animais , Processos Autotróficos , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mutagênese Insercional , Consumo de Oxigênio , Fotossíntese , Enxofre/metabolismo , Transformação Genética
20.
Front Plant Sci ; 9: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472935

RESUMO

Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA