Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(5): 372-374, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427478

RESUMO

Modifications of cysteine residues in redox-sensitive proteins are key to redox signaling and stress response in all organisms. A novel type of redox switch was recently discovered that comprises lysine and cysteine residues covalently linked by an nitrogen-oxygen-sulfur (NOS) bridge. Here, we discuss chemical and biological implications of this discovery.


Assuntos
Cisteína , Lisina , Cisteína/química , Lisina/metabolismo , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas/química
2.
Nat Chem Biol ; 18(4): 368-375, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165445

RESUMO

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.


Assuntos
COVID-19 , Cisteína , Cisteína/química , Humanos , Lisina/metabolismo , Oxirredução , SARS-CoV-2
3.
Angew Chem Int Ed Engl ; : e202404045, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874074

RESUMO

The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. We found that JanthE has a high substrate promiscuity accepting long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Å reveals that C458 is not primarily involved in the cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. We further determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxo-butyrate in the pre-decarboxylation states and unravel atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases able to perform valuable carboligation reactions.

4.
Nat Chem Biol ; 16(11): 1237-1245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839604

RESUMO

The natural antivitamin 2'-methoxy-thiamine (MTh) is implicated in the suppression of microbial growth. However, its mode of action and enzyme-selective inhibition mechanism have remained elusive. Intriguingly, MTh inhibits some thiamine diphosphate (ThDP) enzymes, while being coenzymatically active in others. Here we report the strong inhibition of Escherichia coli transketolase activity by MTh and unravel its mode of action and the structural basis thereof. The unique 2'-methoxy group of MTh diphosphate (MThDP) clashes with a canonical glutamate required for cofactor activation in ThDP-dependent enzymes. This glutamate is forced into a stable, anticatalytic low-barrier hydrogen bond with a neighboring glutamate, disrupting cofactor activation. Molecular dynamics simulations of transketolases and other ThDP enzymes identify active-site flexibility and the topology of the cofactor-binding locale as key determinants for enzyme-selective inhibition. Human enzymes either retain enzymatic activity with MThDP or preferentially bind authentic ThDP over MThDP, while core bacterial metabolic enzymes are inhibited, demonstrating therapeutic potential.


Assuntos
Antibacterianos/metabolismo , Inibidores Enzimáticos/metabolismo , Tiamina/metabolismo , Transcetolase/antagonistas & inibidores , Sequência de Aminoácidos , Antibacterianos/farmacologia , Domínio Catalítico , Coenzimas/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Ácido Glutâmico/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Tiamina/farmacologia , Tiamina Pirofosfato/metabolismo , Transcetolase/genética
5.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195625

RESUMO

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Assuntos
COVID-19 , Cisteína , Humanos , SARS-CoV-2 , Desenho de Fármacos , Oxirredução
6.
J Phys Chem B ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37748048

RESUMO

The activation mechanism of thiamine diphosphate (ThDP) in enzymes has long been the subject of intense research and controversial discussion. Particularly contentious is the formation of a carbene intermediate, the first one observed in an enzyme. For the formation of the carbene to take place, both intramolecular and intermolecular proton transfer pathways have been proposed. However, the physiologically relevant pH of ThDP-dependent enzymes around neutrality does not seem to be suitable for the formation of such reactive chemical species. Herein, we investigate the general mechanism of activation of the ThDP cofactor in human transketolase (TKT), by means of electronic structure methods. We show that in the case of the human TKT, the carbene species is accessible through a pKa shift induced by the electrostatics of a neighboring histidine residue (H110), whose protonation state change modulates the pKa of ThDP and suppresses the latter by more than 6 pH units. Our findings highlight that ThDP enzymes activate the cofactor beyond simple geometric constraints and the canonical glutamate. Such observations in nature can pave the way for the design of biomimetic carbene catalysts and the engineering of tailored enzymatic carbenes.

7.
Curr Opin Struct Biol ; 76: 102441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988322

RESUMO

Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of "unusual" reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of "superassemblies" as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.


Assuntos
Acetolactato Sintase , Tiamina Pirofosfato , Acetolactato Sintase/metabolismo , Difosfatos , Complexos Multienzimáticos , Oxirredutases , Tiamina , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA