Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 140(2): 280-90, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23221369

RESUMO

Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.


Assuntos
Células Germinativas/citologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Apoptose , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Citometria de Fluxo/métodos , Humanos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Cromossomos Sexuais , Espermatogênese , Espermatogônias/patologia , Células-Tronco , Tretinoína/farmacologia
2.
Placenta ; 142: 1-11, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579594

RESUMO

INTRODUCTION: Maternal prenatal psychological stress is associated with adverse pregnancy outcomes and increased risk of adverse health outcomes in children. While the molecular mechanisms that govern these associations has not been fully teased apart, stress-induced changes in placental function can drive sex-specific phenotypes in offspring. We sought to identify and examine molecular pathways in the placenta that are altered in response to maternal prenatal stress. METHODS: We previously employed a mouse model of maternal prenatal stress where pregnant dams were treated with stress hormone (CORT) beginning in mid-gestation. Using this model, we conducted RNAseq analysis of whole placenta at E18.5. We used qRT-PCR to validate gene expression changes in the placenta and in a trophoblast cell line. ELISAs were used to measure the abundance of thyroid hormones in maternal and fetal serum and in the placenta. RESULTS: Dio2 was amongst the top differentially expressed genes in response to exogenous stress hormone. Dio2 expression was more downregulated in placenta of female fetuses from CORT-treated dams than both control placenta from females and placenta from male fetuses. Consistent with Dio2's role in production of bioactive thyroid hormone (T3), we found that there was a reduction of T3 in placenta and serum of female embryos from CORT-treated dams at E18.5. Both T3 and T4 were reduced in the fetal compartment of the placenta of female fetuses from CORT-treated dams at E16.5. Exogenous stress hormone induced reduction in thyroid hormone in females was independent of circulating levels of TH in the dams. DISCUSSION: The placental thyroid hormone synthesis pathway may be a target of elevated maternal stress hormone and modulate fetal programming of health and disease of offspring in a sex-specific fashion.


Assuntos
Corticosterona , Placenta , Humanos , Criança , Gravidez , Feminino , Masculino , Camundongos , Animais , Placenta/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Hormônios Tireóideos , Feto/metabolismo , Glândula Tireoide
3.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37461599

RESUMO

Introduction: Maternal prenatal stress is associated with adverse pregnancy outcomes and predisposition to long-term adverse health outcomes in children. While the molecular mechanisms that govern these associations has not been fully teased apart, stress-induced changes in placental function can drive sex-specific phenotypes in offspring. We sought to identify and examine molecular pathways in the placenta that are altered in response to maternal prenatal stress. Methods: Using a mouse model of maternal prenatal stress, we conducted RNA-seq analysis of whole placenta at E18.5. We used qRT-PCR to validate gene expression changes in the placenta and in a trophoblast cell line. ELISAs were used to measure the abundance of thyroid hormones in maternal and fetal serum and in the placenta. Results: Dio2 was amongst the top differentially expressed genes in response to elevated maternal stress hormone. Dio2 expression was more downregulated in female placenta from stressed dams than both female control and male placenta. Consistent with Dio2's role in production of bioactive thyroid hormone (T3), we found that there was a reduction of T3 in placenta and serum of female embryos from stressed dams at E18.5. Both T3 and T4 were reduced in the fetal compartment of the female placenta from stressed dams at E16.5. Stress hormone induced reduction in thyroid hormone in females was independent of circulating levels of TH in the dams. Discussion: The placental thyroid hormone synthesis pathway may be a target of maternal stress and modulate fetal programming of health and disease of offspring in a sex-specific fashion.

4.
Biol Reprod ; 84(4): 639-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21084712

RESUMO

Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.


Assuntos
Células-Tronco Adultas/citologia , Células de Sertoli/citologia , Espermatogônias/citologia , Testículo/citologia , Células-Tronco Adultas/transplante , Animais , Antitireóideos/farmacologia , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Propiltiouracila/farmacologia , Túbulos Seminíferos/anatomia & histologia , Túbulos Seminíferos/irrigação sanguínea , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Espermatogênese , Espermatogônias/transplante , Testículo/irrigação sanguínea , Testículo/efeitos dos fármacos
5.
Biol Reprod ; 85(2): 347-56, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21543770

RESUMO

Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type A(single) spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks A(single) spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas Inibidoras de Diferenciação/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Inativação Gênica , Proteínas Inibidoras de Diferenciação/genética , Masculino , Camundongos , RNA Interferente Pequeno , Espermatogônias/metabolismo , Testículo/metabolismo
6.
Placenta ; 91: 59-65, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32174308

RESUMO

INTRODUCTION: Placental viral infections are associated with fetal inflammation and adverse pregnancy outcomes. However, there have been limited studies on how placental macrophages in the villous and adjacent fetal umbilical endothelial cells respond to a viral insult. This study aimed to evaluate the communication between Hofbauer cells (HBCs) and human umbilical vein endothelial cells (HUVECs) during a viral infection. METHODS: HBCs were either uninfected or infected with the γ-herpesvirus, MHV-68, and the conditioned medium (CM) collected. HUVECs were exposed to HBC CM and the levels of the pro-neutrophilic response markers: IL-8; E-selectin; intercellular adhesion molecule 1 (ICAM-1); and vascular adhesion molecule 1 (VCAM-1) measured by ELISA and qPCR. The role of HBC-derived IL-1ß was investigated using an IL-1ß blocking antibody (Ab) or IL-1 receptor antagonist (IL-1Ra). RESULTS: MHV-68 infection of HBCs induced a significant increase in IL-1ß secretion. CM from infected HBCs induced HUVEC expression of IL-8, E-selectin, VCAM-1, ICAM-1 mRNA, and secretion of IL-8. The HUVEC response to the CM of MHV-infected HBCs was inhibited by a neutralizing IL-1ß Ab and by IL-1Ra. DISCUSSION: Virally-induced HBC IL-1ß activates HUVECs to generate a pro-neutrophilic response. This novel cell-cell communication pathway may play an important role in the genesis of fetal inflammation associated with placental viral infection.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Placenta/metabolismo , Feminino , Herpesviridae , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/virologia , Placenta/virologia , Gravidez , Molécula 1 de Adesão de Célula Vascular/metabolismo
7.
Front Immunol ; 10: 3134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038643

RESUMO

Allergic asthma is a chronic pulmonary disorder fundamentally linked to immune dysfunction. Since the immune system begins developing in utero, prenatal exposures can affect immune programming and increase risk for diseases such as allergic asthma. Chronic psychosocial stress during pregnancy is one such risk factor, having been associated with increased risk for atopic diseases including allergic asthma in children. To begin to define the underlying causes of the association between maternal stress and allergic airway inflammation in offspring, we developed a mouse model of chronic heightened stress hormone during pregnancy. Continuous oral administration of corticosterone (CORT) to pregnant mice throughout the second half of pregnancy resulted in an ~2-fold increase in circulating hormone in dams with no concomitant increase in fetal circulation, similar to the human condition. To determine how prolonged heightened stress hormone affected allergic immunity in offspring, we induced allergic asthma with house dust mite (HDM) and examined the airway immune response to allergen. Female mice responded to HDM more frequently and had a more robust immune cell response compared to their male counterparts, irrespective of maternal treatment. Male offspring from CORT-treated dams had a greater number of inflammatory cells in the lung in response to HDM compared to males from control dams, while maternal treatment did not affect immune cell numbers in females. Alternatively, maternal CORT caused enhanced goblet cell hyperplasia in female offspring following HDM, an effect that was not observed in male offspring. In summary, prenatal exposure to mild, prolonged heightened stress hormone had sexually dimorphic effects on allergic inflammation in airways of adult offspring.


Assuntos
Asma/etiologia , Asma/imunologia , Corticosterona/efeitos adversos , Gravidez/psicologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Corticosterona/metabolismo , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Pyroglyphidae/imunologia , Estresse Fisiológico , Estresse Psicológico
8.
Reprod Sci ; 21(10): 1274-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24520082

RESUMO

Embryo implantation, which is an absolute requirement for reproduction, starts with blastocyst apposition to the uterine endometrium, followed by attachment to the endometrial surface epithelium. Recent clinical studies reported an increase in implantation and pregnancy rates among women receiving intrauterine human chorionic gonadotropin (hCG) prior to embryo transfer suggesting that, at least in some cases, female infertility is a result of inadequate secretion of hCG. In this study, we characterized the effect of hCG on trophoblast-epithelial interaction by further developing our recently described in vitro model of implantation. Here, we confirmed hCG increased attachment of trophoblast to epithelial cells, using a single-cell trophoblast-epithelial coculture system in addition to a blastocyst-like spheroid-epithelial coculture system. Furthermore, we discovered that the source and concentration was pivotal; the first preparation of hCG affected 2 molecules related to implantation, MUC16 and osteopontin, while the second preparation required additional cytokines to mimic the effects. Using this system, we can develop a comprehensive knowledge of the cellular and gene targets of hCG and other factors involved in embryo apposition and implantation and potentially increase the number of therapeutic targets for subfertile patients.


Assuntos
Gonadotropina Coriônica/farmacologia , Implantação do Embrião/fisiologia , Epitélio/metabolismo , Trofoblastos/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Implantação do Embrião/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Feminino , Humanos , Trofoblastos/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA