Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 31(1): 1-9, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693784

RESUMO

Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.


Assuntos
Degeneração Retiniana , Descolamento Retiniano , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patologia , Células HEK293 , Humanos , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Descolamento Retiniano/congênito , Descolamento Retiniano/genética , Quinases Ativadas por p21/genética
2.
Neuroendocrinology ; 111(12): 1176-1186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33227799

RESUMO

BACKGROUND: Hypogonadotropic hypogonadism (HH) is hypogonadism due to either hypothalamic or pituitary dysfunction. While gonadotropin-releasing hormone (GnRH) can directly test pituitary function, no specific test of hypothalamic function exists. Kisspeptin-54 (KP54) is a neuropeptide that directly stimulates hypothalamic GnRH release and thus could be used to specifically interrogate hypothalamic function. Congenital HH (CHH) is typically due to variants in genes that control hypothalamic GnRH neuronal migration or function. Thus, we investigated whether KP54 could accurately identify hypothalamic dysfunction in men with CHH. METHODS: Men with CHH (n = 21) and healthy eugonadal men (n = 21) received an intravenous bolus of either GnRH (100 µg) or KP54 (6.4 nmol/kg), on 2 occasions, and were monitored for 6 h after administration of each neuropeptide. RESULTS: Maximal luteinizing hormone (LH) rise after KP54 was significantly greater in healthy men (12.5 iU/L) than in men with CHH (0.4 iU/L; p < 0.0001). KP54 more accurately differentiated CHH men from healthy men than GnRH (area under receiver operating characteristic curve KP54: 1.0, 95% CI 1.0-1.0; GnRH: 0.88, 95% CI 0.76-0.99). Indeed, all CHH men had an LH rise <2.0 iU/L following KP54, whereas all healthy men had an LH rise >4.0 iU/L. Anosmic men with CHH (i.e., Kallmann syndrome) had even lower LH rises after KP54 than did normosmic men with CHH (p = 0.017). Likewise, men identified to have pathogenic/likely pathogenic variants in CHH genes had even lower LH rises after KP54 than other men with CHH (p = 0.035). CONCLUSION: KP54 fully discriminated men with CHH from healthy men. Thus, KP54 could be used to specifically interrogate hypothalamic GnRH neuronal function in patients with CHH.


Assuntos
Hormônio Liberador de Gonadotropina/farmacologia , Hipogonadismo/sangue , Hipogonadismo/congênito , Hipogonadismo/diagnóstico , Kisspeptinas/farmacologia , Hormônio Luteinizante/sangue , Hormônio Luteinizante/efeitos dos fármacos , Adulto , Hormônio Liberador de Gonadotropina/administração & dosagem , Humanos , Síndrome de Kallmann/sangue , Síndrome de Kallmann/diagnóstico , Kisspeptinas/administração & dosagem , Masculino
3.
Genet Med ; 22(11): 1759-1767, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32724172

RESUMO

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS: We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS: Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS: We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.


Assuntos
Hipogonadismo , Infertilidade , Aconselhamento Genético , Humanos , Hipogonadismo/genética , Mosaicismo , Sequenciamento do Exoma
4.
Sci Transl Med ; 14(665): eabh2369, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197968

RESUMO

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.


Assuntos
Hipogonadismo , Óxido Nítrico , Animais , Cognição , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipogonadismo/complicações , Hipogonadismo/congênito , Hipogonadismo/genética , Camundongos , Proteínas Mutantes , Mutação/genética , Óxido Nítrico Sintase Tipo I/genética , Nitritos
5.
Biol Open ; 8(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30787007

RESUMO

Cambium contains a stem cell population that produces xylem and phloem tissues in a radial direction during the secondary growth stage. The growth of many storage roots, including in the radish, Raphanus sativus L., also depends on cambium. Interestingly, we observed numerous adventitious roots (ARs) emerging from the cambia of cut surfaces when the bases of radish storage tap roots were removed. Previous studies in Arabidopsis showed that the WOX11/12 pathway regulates AR initiation and meristem establishment in an auxin-dependent manner. Here, we provide evidence indicating the evolutionary conservation of the WOX11/12 pathway during the AR development in radishes. Additionally, we found that expression of two cambium regulators, PXY and WOX4, is induced in the cambium regions that are connected to emerging ARs via vascularization. Both AR formation and genes associated with this were induced by exogenous auxin. Our research suggests that some key cambium regulators might be reprogrammed to aid in the AR development in concert with the WOX11/12 pathway.This article has an associated First Person interview with the first author of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA