Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14149-14159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712380

RESUMO

It is generally accepted that water, as an effective plasticizer, decreases the glass transition temperatures (Tgs) of amorphous drugs, potentially resulting in physical instabilities. However, recent studies suggest that water can also increase the Tgs of the amorphous forms of the drugs prilocaine (PRL) and lidocaine (LID), thus acting as an anti-plasticizer. To further understand the nature of the anti-plasticizing effect of water, interactions with different solvents and the resulting structural features of PRL and LID were investigated by Fourier transform infrared spectroscopy (FTIR) and quantum chemical simulations. Heavy water (deuterium oxides) was chosen as a solvent, as the deuterium and hydrogen atoms are electronically identical. It was found that substituting hydrogen with deuterium showed a minimal impact on the anti-plasticization of water on PRL. Ethanol and ethylene glycol were chosen as solvents to compare the hydrogen bonding patterns occurring between the hydroxyl groups of the solvents and PRL and LID. Comparison of the various Tgs showed a weaker anti-plasticizing potential of these two solvents on PRL and LID. The frequency shifts of the amide CO groups of PRL and LID due to the interactions with water, heavy water, ethanol, and ethylene glycol as observed in the FTIR spectra showed a correlation with the binding energies calculated by quantum chemical simulations. Overall, this study showed that the combination of weak hydrogen bonding and strong electrostatic contributions in hydrated PRL and LID could play an important role in inducing the anti-plasticizing effect of water on those drugs.

2.
Mol Pharm ; 20(8): 4297-4306, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491730

RESUMO

Adsorption of gut relevant biomolecules onto particles after oral administration of solid oral dosage forms is expected to form a "gastrointestinal corona", which could influence solution-mediated solid-state transformations on exposure of drug particles to gastrointestinal fluids. Low-frequency Raman (LFR) spectroscopy was used in this study to investigate in situ solid-state phase transformations under biorelevant temperature and pH conditions along with the presence of biomolecules. Melt-quenched amorphous indomethacin was used as a model solid particulate, and its solid-state behavior was evaluated at 37 °C and pH 1.2-6.8 with or without the presence of typical bile salt/phospholipid mixtures emulating fed-state conditions. Overall, a change in the solid-state transformation pathway from amorphous to crystalline drug was observed, where an intermediate ε-form that initially formed at pH 6.8 was suppressed by the addition of endogenous gastrointestinal biomolecules. These solid-state changes were corroborated using time-resolved synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS). Additionally, the bile salt and phospholipid mixture partly prevented the otherwise strong aggregation between drug particles at more acidic conditions (pH ≤ 4.5) and helped to shift the balance against the intrinsic hydrophobicity of indomethacin as well as the plasticization effect brought about by the physiological temperature (i.e., the stickiness arising from the supercooled liquid state at 37 °C). The overall results highlight the importance of evaluating the impact that endogenous biomolecules may have on the solid-state characteristics of drug molecules in dissolution media, where analytical tools such as LFR spectroscopy can serve as an attractive avenue for accessing time-resolved solid-state information on time-scales that are difficult to achieve with other techniques such as X-ray diffraction.


Assuntos
Indometacina , Fosfolipídeos , Preparações Farmacêuticas , Difração de Raios X , Cristalização , Espalhamento a Baixo Ângulo , Solubilidade , Indometacina/química
3.
Anal Chem ; 94(23): 8241-8248, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647784

RESUMO

In an earlier investigation, low-frequency Raman (LFR) spectroscopy was shown to detect the transition temperature of the ß-relaxation (Tß) in both amorphous celecoxib and various celecoxib amorphous solid dispersions [Be̅rzins, K. Mol. Pharmaceutics 2021, 18(10), 3882-3893]. In this study, we further investigated the application of this technique to determine Tß, an important parameter for estimating crystallization potency of amorphous drugs. Alongside commercially available amorphous drugs (zafirlukast and valsartan disodium salt), differently melt-quenched samples of cimetidine were also analyzed. Overall, the variable-temperature LFR measurements allowed for an easy access to the desired information, including the even lesser transition of the tertiary relaxation motions (Tγ). Thus, the obtained results not only highlighted the sensitivity, but also the practical usefulness of this technique to elucidate (subtle) changes in molecular dynamics within amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Análise Espectral Raman , Varredura Diferencial de Calorimetria , Cimetidina/química , Indóis/química , Preparações Farmacêuticas , Fenilcarbamatos/química , Sensibilidade e Especificidade , Sulfonamidas/química , Temperatura , Temperatura de Transição , Valsartana/química
4.
Mol Pharm ; 19(9): 3199-3205, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876141

RESUMO

Water is generally regarded as a universal plasticizer of amorphous drugs or amorphous drug-containing systems. A decrease in glass-transition temperature (Tg) is considered the general result of this plasticizing effect. A recent study exhibits that water can increase the Tg of amorphous prilocaine (PRL) and thus shows an anti-plasticizing effect. The structurally similar drug lidocaine (LID) might show similar interactions with water, and thus an anti-plasticizing effect of water is hypothesized to also occur in amorphous LID. However, the influence of water on the Tg of LID cannot be determined directly due to the very low stability of LID in the amorphous form. It is possible to predict the Tg of LID from a co-amorphous system of PRL-LID using the Gordon-Taylor equation. Interactions were observed between PRL and LID based on the deviations between the experimental Tgs and the Tgs calculated by the conventional use of the Gordon-Taylor equation. A modified use of the Gordon-Taylor equation was applied using the optimal co-amorphous system as a separate component and the excess drug as the other component. The predicted Tg of fully hydrated LID could thus be determined and was found to be increased by 0.9 ± 0.7 K compared with the Tg of water-free amorphous LID. It could be shown that water exhibited a small anti-plasticizing effect on LID.


Assuntos
Vidro , Lidocaína , Varredura Diferencial de Calorimetria , Temperatura , Temperatura de Transição
5.
Mol Pharm ; 19(4): 1183-1190, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35230110

RESUMO

In this study, surface diffusion of l-aspartic acid-carvedilol (ASP-CAR) co-amorphous systems at different ASP concentrations is measured and correlated with their physical stability. ASP-CAR films at ASP concentrations of 1-5% (w/w) were prepared by a newly developed method based on a vacuum compression molding process. Surface diffusion measurements were conducted on these systems based on the surface grating decay method using atomic force microscopy (AFM). The results demonstrate that a small amount of ASP (i.e., ≤ 5% w/w) in the co-amorphous systems could significantly slow down the grating decay process compared with that of pure amorphous CAR, indicating a reduced surface diffusion of CAR molecules. The decay time gradually increased in co-amorphous systems with increasing ASP concentration from 1 to 5% (w/w), with the longest observed decay time of around 800 h for the 5%ASP-CAR system, which was more than 200 times longer compared to the decay time of pure amorphous CAR (approximately 3 h). A good correlation between the decay constants of the pure amorphous CAR and co-amorphous films at ASP concentrations of 1-5% (w/w) and the physical stability of corresponding amorphous powder samples was found. Overall, this study provides a new method to prepare co-amorphous films for surface property measurements and reveals the impact of surface diffusion on the physical stability of co-amorphous systems.


Assuntos
Estabilidade de Medicamentos , Carvedilol , Difusão , Pós , Solubilidade , Propriedades de Superfície
6.
AAPS PharmSciTech ; 23(6): 173, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739362

RESUMO

Poor aqueous solubility is a common characteristic of new drug candidates, which leads to low or inconsistent oral bioavailability. This has sparked an interest in material efficient testing of solubility and dissolution rate. The aim was to develop a microgram scale video-microscopic method to screen the dissolution rates of poorly water-soluble drugs. This method was applied to six drugs (carvedilol, diazepam, dipyridamole, felodipine, fenofibrate, and indomethacin) in fasted state simulated intestinal fluid (FaSSIF), of indomethacin in buffer with varying pH, and of diazepam and dipyridamole in customized media. An additional aim was to track phase transformations for carbamazepine in FaSSIF. The dissolution rates and particle behavior of the drugs were investigated by tracking particle surface area over time using optical video-microscopy. Applying miniaturized UV spectroscopic dissolution resulted in a similar grouping of dissolution rates and pH effects, as for the video-microscopic setup. Using customized media showed that lysophospholipid enhanced the dissolution rate of diazepam and dipyridamole. The video-microscopic setup allowed for the nucleation of transparent particles on dissolving carbamazepine particles to be tracked over time. The developed setup offers a material efficient screening approach to group drugs according to dissolution rate, where the use of optical microscopy helps to achieve a high sample throughput.


Assuntos
Indometacina , Água , Carbamazepina , Diazepam , Dipiridamol , Solubilidade , Água/química
7.
Mol Pharm ; 18(10): 3882-3893, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529437

RESUMO

Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,ß, a major indicator of the physical stability of neat amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Composição de Medicamentos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Cristalização , Derivados da Hipromelose/química , Povidona/química , Pressão , Pirrolidinas , Análise Espectral Raman , Compostos de Vinila
8.
Mol Pharm ; 18(3): 1264-1276, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406363

RESUMO

Detection of the solid-state forms of pharmaceutical compounds is important from the drug performance point of view. Low-frequency Raman (LFR) spectroscopy has been demonstrated to be very sensitive in detecting the different solid-state forms of pharmaceutically relevant compounds. The potential of LFR spectroscopy to probe the in situ isothermal dehydration was studied using piroxicam monohydrate (PXM) and theophylline monohydrate (TPMH) as the model drugs. The dehydration of PXM and TPMH at four different temperatures (95, 100, 105, and 110 °C and 50, 60, 70, and 80 °C, respectively) was monitored in both the low- (20-300 cm-1) and mid-frequency (335-1800 cm-1) regions of the Raman spectra. Principal component analysis and multivariate curve resolution were applied for the analysis of the Raman data. Spectral differences observed in both regions highlighted the formation of specific anhydrous forms of piroxicam and theophylline from their respective monohydrates. The formation of the anhydrous forms was detected on different timescales (approx. 2 min) between the low and mid-frequency Raman regions. This finding highlights the differing nature of the vibrations being detected between these two spectral regions. Computational simulations performed were also in agreement with the experimental results, and allowed elucidating the origin of different spectral features.


Assuntos
Preparações Farmacêuticas/química , Cristalização/métodos , Piroxicam/química , Análise Espectral Raman/métodos , Temperatura , Teofilina/química
9.
Mol Pharm ; 18(3): 1408-1418, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586988

RESUMO

In an earlier investigation, amorphous celecoxib was shown to be sensitive to compression-induced destabilization. This was established by evaluating the physical stability of uncompressed/compressed phases in the supercooled state (Be̅rzins . Mol. Pharmaceutics, 2019, 16(8), 3678-3686). In this study, we investigated the ramifications of compression-induced destabilization in the glassy state as well as the impact of compression on the dissolution behavior. Slow and fast melt-quenched celecoxib disks were compressed with a range of compression pressures (125-500 MPa) and dwell times (0-60 s). These were then monitored for crystallization using low-frequency Raman spectroscopy when kept under dry (∼20 °C; <5% RH) and humid (∼20 °C; 97% RH) storage conditions. Faster crystallization was observed from the samples, which were compressed using more severe compression parameters. Furthermore, crystallization was also affected by the cooling rate used to form the amorphous phases; slow melt-quenched samples exhibited higher sensitivity to compression-induced destabilization. The behavior of the melt-quench disks, subjected to different compression conditions, was continuously monitored during dissolution using low-frequency Raman and UV/vis for the solid-state form and dissolution properties, respectively. Surprisingly the compressed samples exhibited higher apparent dissolution (i.e., higher area under the dissolution curve and initial celecoxib concentration in solution) than the uncompressed samples; however, this is attributed to biaxial fracturing throughout the compressed compacts yielding a greater effective surface area. Differences between the slow and fast melt quenched samples showed some trends similar to those observed for their storage stability.


Assuntos
Celecoxib/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Transição de Fase/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos
10.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557164

RESUMO

Converting crystalline compounds into co-amorphous systems is an effective way to improve the solubility of poorly water-soluble drugs. It is, however, of critical importance for the physical stability of co-amorphous systems to find the optimal mixing ratio of the drug with the co-former. In this study, a novel approach for this challenge is presented, exemplified with the co-amorphous system carvedilol-tryptophan (CAR-TRP). Following X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) of the ball-milled samples to confirm their amorphous form, Fourier-transform infrared spectroscopy (FTIR) and principal component analysis (PCA) were applied to investigate intermolecular interactions. A clear deviation from a purely additive spectrum of CAR and TRP was visualized in the PCA score plot, with a maximum at around 30% drug (mol/mol). This deviation was attributed to hydrogen bonds of CAR with TRP ether groups. The sample containing 30% drug (mol/mol) was also the most stable sample during a stability test. Using the combination of FTIR with PCA is an effective approach to investigate the optimal mixing ratio of non-strong interacting co-amorphous systems.


Assuntos
Carvedilol/química , Triptofano/química , Composição de Medicamentos , Estabilidade de Medicamentos , Análise Multivariada , Solubilidade , Água/química
11.
Mol Pharm ; 17(4): 1335-1342, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32119557

RESUMO

Coamorphous drug formulations are a promising approach to improve solubility and bioavailability of poorly water-soluble drugs. On the basis of theoretical assumptions involving molecular interactions, the 1:1 molar ratio of drug and coformer is frequently used as "the optimal ratio" for a homogeneous coamorphous system (i.e., the coamorphous system with the highest physical stability and, if strong interaction is possible between two molecules, the highest glass transition temperature (Tg)). In order to more closely investigate this assumption, l-aspartic acid (ASP) and l-glutamic acid (GLU) were investigated as coformers for the basic drug carvedilol (CAR) at varying molar ratios. Salt formation between CAR with ASP or GLU was expected to occur at the molar 1:1 ratio based on their chemical structures. Interestingly, the largest deviation between the experimental Tg and the theoretical Tg based on the Gordon-Taylor equation was observed at a molar ratio of around 1:1.5 in CAR-ASP and CAR-GLU systems. In order to determine the exact value of the ratio with the highest Tg, a data fitting approach was established on thermometric data of various CAR-ASP and CAR-GLU systems. The highest Tg was found to be at CAR-ASP 1:1.46 and CAR-GLU 1:1.43 mathematically. Spectroscopic investigations and physical stability measurements further confirmed that the optimal molar ratio for obtaining a homogeneous system and the highest stability can be found at a molar ratio around 1:1.5. Overall, this study developed a novel approach to determine the optimal ratio between drug and coformers and revealed the influence of varying molar ratios on molecular interactions and physical stability in coamorphous systems.


Assuntos
Aminoácidos/química , Carvedilol/química , Disponibilidade Biológica , Composição de Medicamentos , Estabilidade de Medicamentos , Solubilidade , Temperatura de Transição
12.
Mol Pharm ; 17(5): 1715-1722, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32207959

RESUMO

Quantifying molecular surface diffusivity is of broad interest in many different fields of science and technology. In this study, the method of surface grating decay is utilized to investigate the surface diffusion of practical relevant amorphous solid dispersions of indomethacin and the polymeric excipient Soluplus (a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) at various polymer concentrations (1-20% w/w). The study confirms that measuring surface diffusivity below the system's glass transition temperature is possible with a simplified atomic force microscopy setup. Results highlight a striking polymer influence on the surface diffusivity of drug molecules at low polymer concentrations and a turnover point to a polymer dominated diffusion at around three percent (w/w) polymer concentration. The surface diffusion measurements further correlate well with the observed increase in physical stability of the system as measured by X-ray powder diffraction. These findings are of vital interest in both the applied use and fundamental understanding of amorphous solid dispersions.


Assuntos
Indometacina/química , Microscopia de Força Atômica/métodos , Polietilenoglicóis/química , Polivinil/química , Difusão , Estabilidade de Medicamentos , Difração de Raios X
13.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070014

RESUMO

Micromechanical Thermal Analysis utilizes microstring resonators to analyze a minimum amount of sample to obtain both the thermal and mechanical responses of the sample during a heating ramp. We introduce a modulated setup by superimposing a sinusoidal heating on the linear heating and implementing a post-measurement data deconvolution process. This setup is utilized to take a closer look at the glass transition as an important fundamental feature of amorphous matter with relations to the processing and physical stability of small molecule drugs. With an additionally developed image and qualitative mode shape analysis, we are able to separate distinct features of the glass transition process and explain a previously observed two-fold change in resonance frequency. The results from this setup indicate the detection of initial relaxation to viscous flow onset as well as differences in mode responsivity and possible changes in the primary resonance mode of the string resonators. The modulated setup is helpful to distinguish these processes during the glass transition with varying responses in the frequency and quality factor domain and offers a more robust way to detect the glass transition compared to previously developed methods. Furthermore, practical and theoretical considerations are discussed when performing measurements on string resonators (and comparable emerging analytical techniques) for physicochemical characterization.

14.
Anal Chem ; 91(11): 7411-7417, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31050887

RESUMO

Amorphous materials exhibit distinct physicochemical properties compared to their respective crystalline counterparts. One of these properties, the increased solubility of amorphous materials, is exploited in the pharmaceutical industry as a way of increasing bioavailability of poorly water-soluble drugs. Despite the increasing interest in drug amorphization, the analytical physicochemical toolbox is lacking a reliable method for direct amorphous solubility assessment. Here, we show, for the first time, a direct approach to measure the amorphous solubility of diverse drugs by combining optics with fluidics, the single particle analysis (SPA) method. Moreover, a comparison was made to a theoretical estimation based on thermal analysis and to a standardized supersaturation and precipitation method. We have found a good level of agreement between the three methods. Importantly, the SPA method allowed for the first experimental measurement of the amorphous solubility for griseofulvin, a fast crystallizing drug, without the use of a crystallization inhibitor. In conclusion, the SPA approach enables rapid and straightforward determination of the supersaturation potential for amorphous materials of less than 0.1 mg, which could prove highly beneficial in the fields of materials science, analytical chemistry, physical chemistry, food science, pharmaceutical science, and others.

15.
Mol Pharm ; 16(1): 184-194, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30495965

RESUMO

Liposomes have been widely researched as drug delivery systems; however, the solid state form of drug inside the liposome, whether it is in solution or in a solid state, is often not studied. The solid state properties of the drug inside the liposomes are important, as they dictate the drug release behavior when the liposomes come into contact with physiological fluid. Recently, a new approach of making liposomal ciprofloxacin nanocrystals was proposed by the use of an additional freeze-thawing step in the liposomal preparation method. This paper aims to determine the solid state properties of ciprofloxacin inside the liposomes after this additional freeze-thawing cycle using cryo-TEM, small-angle X-ray scattering (SAXS), and cross-polarized light microscopy (CPLM). Ciprofloxacin precipitated in the ciprofloxacin hydrate crystal form with a unit cell dimension of 16.7 Å. The nanocrystals also showed a phase transition at 93 °C, which represents dehydration of the hydrate crystals to the anhydrate form of ciprofloxacin, verified by temperature-dependent SAXS measurements. Furthermore, the dependence of the solid state form of the nanocrystals on pH was investigated in situ, and it was shown that the liposomal ciprofloxacin nanocrystals retained their crystalline form at pH 6-10. Understanding the solid state attributes of nanocrystals inside liposomes provides improved understanding of drug dissolution and release as well as opening avenues to new applications where the nanosized crystals can provide a dissolution benefit.


Assuntos
Ciprofloxacina/química , Lipossomos/química , Nanopartículas/química , Microscopia Crioeletrônica , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
Mol Pharm ; 16(3): 1294-1304, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624075

RESUMO

The formation of co-amorphous and co-crystal systems are attractive formulation strategies for poorly water-soluble drugs. Intermolecular interactions between the drug and the coformer(s) play an important role in the formation of both systems, making the investigation of transformations between the two systems specifically interesting. The aim of this study thus was to investigate the transformation between the two systems and its influence on the formation and physical stability of co-amorphous systems. Carbamazepine (CBZ) along with benzoic acid, maleic acid, succinic acid, tartaric acid, saccharin, and nicotinamide were used as materials. First, CBZ- co-former co-crystals were prepared. Then the co-crystals and CBZ- co-former physical mixtures were ball milled to investigate the possible co-amorphization process. The XRPD and DSC results showed that CBZ and coformers tended to maintain (co-crystals as the starting material) or form co-crystals (physical mixtures as the starting material), rather than to form co-amorphous systems. Next, co-amorphization from CBZ- co-former physical mixtures via quench cooling was studied. While co-amorphous systems were obtained, the physical stability of these was very low, and the samples recrystallized to either co-crystal forms or the individual components. In conclusion, a possible transformation between the two systems was confirmed, but the resulting co-amorphous systems were highly unstable.


Assuntos
Química Farmacêutica/métodos , Cristalização , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Carbamazepina/química , Ácidos Carboxílicos/química , Liberação Controlada de Fármacos , Ligação de Hidrogênio , Niacinamida/química , Sacarina/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Mol Pharm ; 16(4): 1775-1781, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810323

RESUMO

The use of electron microscopy techniques in the understanding of shape and size of nanoparticles are commonly applied to drug nanotechnology, but the type of microscopy and suitability for the particles of interest can have a significant impact on the result. The size and shape of the nanoparticles are crucial in clinical applications; however, direct comparison of the results from standard transmission electron microscopy (TEM) and cryo-TEM have rarely been reported. As a useful case for comparison, liposomal drug nanocrystals are studied here. In this study, the effect of thawing temperature on the size and shape of the ciprofloxacin nanocrystals was determined. A quantitative standard TEM assay was developed to allow for high-throughput particle size analysis. These results were compared to size and shape information obtained using the cryo-TEM method. The results showed broad agreement between the two TEM methods and that ciprofloxacin nanocrystals formed shorter and thinner crystals inside the liposomes at higher thawing temperatures. The results provide confidence in the use of standard TEM to determine the size and shape distribution of solid nanoparticles (in this case, encapsulated inside liposomes) from aqueous media without fear of sample preparation altering the conclusions.


Assuntos
Ciprofloxacina/química , Microscopia Crioeletrônica/métodos , Doxorrubicina/química , Lipossomos/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Imagem Molecular/métodos , Nanopartículas/ultraestrutura
18.
Mol Pharm ; 16(8): 3678-3686, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31246479

RESUMO

A series of melt-quenched disks of amorphous celecoxib were obtained using two different cooling rates (>100 °C/min and ∼25-30 °C/min) and subjected to different compression pressures (125, 250, and 500 MPa) and dwell times (0, 30, and 60 s). The kinetics of crystallization for these differently prepared melt-quenched disks were probed using a number of methods. Low-frequency Raman spectroscopy was used to monitor isothermal crystallization kinetics, whereas dynamic differential scanning calorimetry served as a complimentary technique to identify changes in form. Although both compression parameters destabilized the amorphous celecoxib, the dwell time was found to have a more critical overall effect. Additionally, the sample history was affirmed to be a factor for limiting the magnitude of compression-induced destabilization.


Assuntos
Celecoxib/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Transição de Fase , Pressão , Solubilidade , Análise Espectral Raman , Temperatura de Transição
19.
Phys Chem Chem Phys ; 21(35): 19686-19694, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469369

RESUMO

In this study the glass transition temperatures (Tgα and Tgß) in mesoporous silica-based amorphous drugs were characterized. For this purpose, mesoporous silica Parteck SLC (MPS) was loaded with the drugs ibuprofen and carvedilol, either below, at, or above the monomolecular drug loading capacities, i.e. the concentration at which the entire MPS surface is covered with a monolayer of drug molecules. The resulting amorphous forms were analysed using X-ray powder diffraction and the thermal behaviour was characterised with differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The drug monolayer did not contribute to the thermal signal in DSC. Using DMA however, it could be shown that the monolayer indeed exhibited a very weak Tgα, and that the temperature range of this transition did not differ from that of the quench cooled amorphous drugs. Theoretical ab initio molecular dynamics simulations revealed that the nature of hydrogen bonding geometry of the functional groups interacting with the MPS surface were similar to that of the respective crystalline drugs, which results in restricted molecular motions for those functional groups. On the other hand, the non-interacting parts of the molecules exhibited molecular motions similar to what is observed in pure amorphous drugs. As a result of the interactions of the monolayer with the MPS surface, the monomolecular drug layer did not reveal a Tgß. However, a Tgß was found at any drug-MPS ratios above the monomolecular drug loading capacity as a result of the excess drug which forms a "true" amorphous phase. Overall, this study demonstrated that drug molecules forming an amorphous monolayer on the surfaces of a mesoporous silica particle, even though they are restricted in their mobility, exhibit a Tgα, but lack a Tgß, whereas any excess drug confined in the MPS pores showed similar properties as the pure amorphous drug. These findings will help to increase the overall understanding of drug loaded MS systems, including their physical stability as well as release properties.


Assuntos
Vidro/química , Dióxido de Silício/química , Temperatura de Transição , Varredura Diferencial de Calorimetria , Carvedilol/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Ibuprofeno/química , Simulação de Dinâmica Molecular
20.
Nanomedicine ; 20: 102022, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170510

RESUMO

Anti-biofilm peptides are a subset of antimicrobial peptides and represent promising broad-spectrum agents for the treatment of bacterial biofilms, though some display host toxicity in vivo. Here we evaluated nanogels composed of modified hyaluronic acid for the encapsulation of the anti-biofilm peptide DJK-5 in vivo. Nanogels of 174 to 194 nm encapsulating 33-60% of peptide were created. Efficacy and toxicity of the nanogels were tested in vivo employing a murine abscess model of a Pseudomonas aeruginosa LESB58 high bacterial density infection. The dose of DJK-5 that could be administered intravenously to mice without inducing toxicity was more than doubled after encapsulation in nanogels. Upon subcutaneous administration, the toxicity of the DJK-5 in nanogels was decreased four-fold compared to non-formulated peptide, without compromising the anti-abscess effect of DJK-5. These findings support the use of nanogels to increase the safety of antimicrobial and anti-biofilm peptides after intravenous and subcutaneous administration.


Assuntos
Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Nanogéis/química , Oligopeptídeos/farmacologia , Abscesso/patologia , Animais , Materiais Biocompatíveis/química , Ácido Hialurônico/química , Camundongos , Nanogéis/ultraestrutura , Oligopeptídeos/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA