Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 102(2): 207-220, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27353476

RESUMO

Bacterial flagella assembly is tightly regulated to ensure a timely and sequential production of the various flagellum constituents. In the pathogen Campylobacter jejuni the hierarchy in flagella biosynthesis is largely determined at the transcriptional level through the activity of the alternative sigma factors sigma54 and sigma28 . Here, we report that C. jejuni flagellin levels are also controlled at the post-transcriptional level via the thus far poorly-characterized flagellar assembly factor FliW. Analysis of flagellin synthesis in C. jejuni 81116 and a ΔfliW knock-out mutant showed reduced flagellin protein levels in the mutant strain while ectopic expression of FliW resulted in enhanced levels. Real-time RT-PCR revealed relatively minor changes in flaA and flaB mRNA levels for the recombinant and parent strain consistent with post-transcriptional regulation. Purified FliW was found to bind to FlaA and FlaB flagellin as well as to the global post-transcriptional regulator CsrA. Inactivation of CsrA resulted in increased levels of flagellin translation. An in vitro translation assay confirmed the regulatory role of CsrA in flagellin biosynthesis. We propose that competitive reciprocal binding of FliW to flagellins and the RNA binding protein CsrA serves as a feedback mechanism to control the number of cytosolic flagellin copies at the protein level.


Assuntos
Campylobacter jejuni/metabolismo , Flagelina/metabolismo , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Retroalimentação Fisiológica , Flagelos/metabolismo , Flagelina/biossíntese , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo
2.
mBio ; 12(5): e0218021, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634944

RESUMO

Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/genética , Polaridade Celular , Humanos , Legionella pneumophila/citologia , Legionella pneumophila/genética , Transporte Proteico , Sistemas de Secreção Tipo IV/genética
3.
Front Microbiol ; 8: 1060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659885

RESUMO

Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB) that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC). This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.

4.
PLoS One ; 11(10): e0164837, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760175

RESUMO

Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20-40 µg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.


Assuntos
Vacinas Bacterianas/imunologia , Campylobacter jejuni/imunologia , Galinhas/imunologia , Flagelina/imunologia , Imunização , Proteínas Recombinantes de Fusão/imunologia , Receptor 5 Toll-Like/genética , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/genética , Campylobacter jejuni/genética , Embrião de Galinha , Galinhas/microbiologia , Flagelina/genética , Imunidade nas Mucosas/imunologia , Cinética , Proteínas Recombinantes de Fusão/genética , Receptor 5 Toll-Like/metabolismo , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
PLoS One ; 7(10): e46563, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056345

RESUMO

BACKGROUND: The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. METHODS AND RESULTS: The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. CONCLUSION: Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.


Assuntos
Helicobacter pylori/enzimologia , Oxirredutases/metabolismo , Teste de Complementação Genética , Helicobacter pylori/genética , Microscopia Eletrônica de Transmissão , Mutagênese , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA