Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(18): 3054-3063, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885237

RESUMO

Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye disorders in humans affecting ~12 per 100 000 live births. Currently, variants in over 100 genes are known to underlie these conditions. However, at least 40% of affected individuals remain without a clinical genetic diagnosis, suggesting variants in additional genes may be responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, an important class of developmental proteins, as yet uncharacterized in vertebrates. We identified five individuals with microphthalmia and/or coloboma from four independent families carrying homozygous or compound heterozygous predicted damaging variants in CAPN15. Several individuals had additional phenotypes including growth deficits, developmental delay and hearing loss. We generated Capn15 knockout mice that exhibited similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. We demonstrate widespread Capn15 expression throughout the brain and central nervous system, strongest during early development, and decreasing postnatally. Together, these findings demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may signify a new developmental pathway.


Assuntos
Calpaína/genética , Anormalidades do Olho/genética , Predisposição Genética para Doença , Malformações do Sistema Nervoso/genética , Animais , Surdez/genética , Surdez/patologia , Anormalidades do Olho/patologia , Feminino , Humanos , Masculino , Camundongos Knockout , Malformações do Sistema Nervoso/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo
2.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402090

RESUMO

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Assuntos
Encéfalo/anormalidades , Anormalidades do Olho/genética , Dedos/anormalidades , Mutação de Sentido Incorreto , Fenótipo , Ubiquitina-Proteína Ligases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
3.
J Med Genet ; 56(7): 444-452, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30842225

RESUMO

BACKGROUND: A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia. METHODS: Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq. RESULTS: Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3' UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS. CONCLUSION: These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yields.


Assuntos
Regiões 3' não Traduzidas , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Poli A , Alelos , Anoftalmia , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Escore Lod , Masculino , Microftalmia , Linhagem , Análise de Sequência de DNA , Inativação do Cromossomo X
4.
Hum Genet ; 138(8-9): 799-830, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30762128

RESUMO

Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.


Assuntos
Anoftalmia/genética , Anormalidades do Olho/genética , Microftalmia/genética , Animais , Exoma/genética , Olho/patologia , Humanos , Fenótipo , Síndrome
5.
Hum Genet ; 138(8-9): 1027-1042, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29464339

RESUMO

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.


Assuntos
Conexinas/genética , Anormalidades do Olho/genética , Mutação de Sentido Incorreto/genética , Catarata/genética , Estudos de Coortes , Proteínas do Olho/genética , Feminino , Junções Comunicantes/genética , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Cristalino/patologia , Masculino , Linhagem , Fenótipo
6.
Am J Med Genet A ; 176(4): 862-876, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29460469

RESUMO

In 2016, we described that missense variants in parts of exons 30 and 31 of CREBBP can cause a phenotype that differs from Rubinstein-Taybi syndrome (RSTS). Here we report on another 11 patients with variants in this region of CREBBP (between bp 5,128 and 5,614) and two with variants in the homologous region of EP300. None of the patients show characteristics typical for RSTS. The variants were detected by exome sequencing using a panel for intellectual disability in all but one individual, in whom Sanger sequencing was performed upon clinical recognition of the entity. The main characteristics of the patients are developmental delay (90%), autistic behavior (65%), short stature (42%), and microcephaly (43%). Medical problems include feeding problems (75%), vision (50%), and hearing (54%) impairments, recurrent upper airway infections (42%), and epilepsy (21%). Major malformations are less common except for cryptorchidism (46% of males), and cerebral anomalies (70%). Individuals with variants between bp 5,595 and 5,614 of CREBBP show a specific phenotype (ptosis, telecanthi, short and upslanted palpebral fissures, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum). 3D face shape demonstrated resemblance to individuals with a duplication of 16p13.3 (the region that includes CREBBP), possibly indicating a gain of function. The other affected individuals show a less specific phenotype. We conclude that there is now more firm evidence that variants in these specific regions of CREBBP and EP300 result in a phenotype that differs from RSTS, and that this phenotype may be heterogeneous.


Assuntos
Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , Mutação , Síndrome de Rubinstein-Taybi/genética , Adolescente , Alelos , Criança , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imageamento Tridimensional , Lactente , Masculino , Modelos Anatômicos , Fenótipo , Síndrome de Rubinstein-Taybi/diagnóstico
7.
Nat Genet ; 33(4): 461-3, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12612584

RESUMO

A submicroscopic deletion containing SOX2 was identified at the 3q breakpoint in a child with t(3;11)(q26.3;p11.2) associated with bilateral anophthalmia. Subsequent SOX2 mutation analysis identified de novo truncating mutations of SOX2 in 4 of 35 (11%) individuals with anophthalmia. Both eyes were affected in all cases with an identified mutation.


Assuntos
Anoftalmia/genética , Cromossomos Humanos Par 3 , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Códon sem Sentido , Bases de Dados como Assunto , Saúde da Família , Feminino , Deleção de Genes , Proteínas HMGB , Heterozigoto , Humanos , Íntrons , Masculino , Microftalmia/genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Fatores de Transcrição SOXB1 , Fatores de Transcrição
8.
Eur J Hum Genet ; 31(3): 353-359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207621

RESUMO

Nystagmus (involuntary, rhythmical eye movements) can arise due to sensory eye defects, in association with neurological disorders or as an isolated condition. We identified a family with early onset nystagmus and additional neurological features carrying a partial duplication of FGF14, a gene associated with spinocerebellar ataxia type 27 (SCA27) and episodic ataxia. Detailed eye movement analysis revealed oculomotor anomalies strikingly similar to those reported in a previously described four-generation family with early onset nystagmus and linkage to a region on chromosome 13q31.3-q33.1 (NYS4). Since FGF14 lies within NYS4, we revisited the original pedigree using whole genome sequencing, identifying a 161 kb heterozygous deletion disrupting FGF14 and ITGBL1 in the affected individuals, suggesting an FGF14-related condition. Therefore, our study reveals the genetic variant underlying NYS4, expands the spectrum of pathogenic FGF14 variants, and highlights the importance of screening FGF14 in apparently isolated early onset nystagmus.


Assuntos
Nistagmo Patológico , Degenerações Espinocerebelares , Humanos , Ataxia/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Integrina beta1/genética , Linhagem , Degenerações Espinocerebelares/genética
9.
Eur J Hum Genet ; 31(10): 1175-1180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36997679

RESUMO

Biallelic pathogenic variants in ALDH1A3 are responsible for approximately 11% of recessively inherited cases of severe developmental eye anomalies. Some individuals can display variable neurodevelopmental features, but the relationship to the ALDH1A3 variants remains unclear. Here, we describe seven unrelated families with biallelic pathogenic ALDH1A3 variants: four compound heterozygous and three homozygous. All affected individuals had bilateral anophthalmia/microphthalmia (A/M), three with additional intellectual or developmental delay, one with autism and seizures and three with facial dysmorphic features. This study confirms that individuals with biallelic pathogenic ALDH1A3 variants consistently manifest A/M, but additionally display neurodevelopmental features with significant intra- and interfamilial variability. Furthermore, we describe the first case with cataract and highlight the importance of screening ALDH1A3 variants in nonconsanguineous families with A/M.


Assuntos
Anoftalmia , Anormalidades do Olho , Microftalmia , Humanos , Microftalmia/genética , Anoftalmia/genética , Mutação , Aldeído Oxirredutases/genética , Fenótipo
10.
Ophthalmic Genet ; 43(6): 809-816, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695497

RESUMO

BACKGROUND: Anophthalmia, microphthalmia and coloboma are a genetically heterogenous spectrum of developmental eye disorders. Recently, variants in the Wnt-pathway gene Frizzled Class Receptor 5 (FZD5) have been identified in individuals with coloboma and rarely microphthalmia, sometimes with additional phenotypes and variable penetrance. MATERIALS AND METHODS: We identified variants in FZD5 in individuals with developmental eye disorders from the UK (including the DDD Study [www.ddduk.org/access.html]), France and Spain using whole genome/exome sequencing or customized NGS panels of ocular development genes. RESULTS: We report eight new families with FZD5 variants and ocular coloboma. Three individuals presented with additional syndromic features, two explicable by additional variants in other genes (SLC12A2 and DDX3X). In two families initially showing incomplete penetrance, re-examination of apparently unaffected carrier individuals revealed subtle ocular colobomatous phenotypes. Finally, we report two families with microphthalmia in addition to coloboma, representing the second and third reported cases of this phenotype in conjunction with FZD5 variants. CONCLUSIONS: Our findings indicate FZD5 variants are typically associated with isolated ocular coloboma, occasionally microphthalmia, and that extraocular phenotypes are likely to be explained by other gene alterations.


Assuntos
Anoftalmia , Coloboma , Microftalmia , Humanos , Microftalmia/genética , Coloboma/diagnóstico , Coloboma/genética , Olho , Anoftalmia/genética , Fenótipo , Receptores Frizzled/genética , Membro 2 da Família 12 de Carreador de Soluto/genética
11.
Am J Hum Genet ; 82(2): 304-19, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18252212

RESUMO

Developmental ocular malformations, including anophthalmia-microphthalmia (AM), are heterogeneous disorders with frequent sporadic or non-Mendelian inheritance. Recurrent interstitial deletions of 14q22-q23 have been associated with AM, sometimes with poly/syndactyly and hypopituitarism. We identify two further cases of AM (one with associated pituitary anomalies) with a 14q22-q23 deletion. Using a positional candidate gene approach, we analyzed the BMP4 (Bone Morphogenetic Protein-4) gene and identified a frameshift mutation (c.226del2, p.S76fs104X) that segregated with AM, retinal dystrophy, myopia, brain anomalies, and polydactyly in a family and a nonconservative missense mutation (c.278A-->G, p.E93G) in a highly conserved base in another family. MR imaging and tractography in the c.226del2 proband revealed a primary brain developmental disorder affecting thalamostriatal and callosal pathways, also present in the affected grandmother. Using in situ hybridization in human embryos, we demonstrate expression of BMP4 in optic vesicle, developing retina and lens, pituitary region, and digits strongly supporting BMP4 as a causative gene for AM, pituitary, and poly/syndactyly. Because BMP4 interacts with HH signaling genes in animals, we evaluated gene expression in human embryos and demonstrate cotemporal and cospatial expression of BMP4 and HH signaling genes. We also identified four cases, some of whom had retinal dystrophy, with "low-penetrant" mutations in both BMP4 and HH signaling genes: SHH (Sonic Hedgehog) or PTCH1 (Patched). We propose that BMP4 is a major gene for AM and/or retinal dystrophy and brain anomalies and may be a candidate gene for myopia and poly/syndactyly. Our finding of low-penetrant variants in BMP4 and HH signaling partners is suggestive of an interaction between the two pathways in humans.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 14/genética , Olho/metabolismo , Proteínas Hedgehog/metabolismo , Malformações do Sistema Nervoso/genética , Polidactilia/genética , Transdução de Sinais/genética , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/metabolismo , Estudos de Coortes , Primers do DNA/genética , Eletrofisiologia , Olho/embriologia , Mutação da Fase de Leitura/genética , Proteínas Hedgehog/genética , Humanos , Hibridização In Situ
12.
Mol Vis ; 17: 3097-106, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22171155

RESUMO

PURPOSE: Sex determining region Y (SRY)-box 2 (SOX2) anophthalmia syndrome is an autosomal dominant disorder manifesting as severe developmental eye malformations associated with brain, esophageal, genital, and kidney abnormalities. The syndrome is usually caused by de novo mutations or deletions in the transcription factor SOX2. To investigate any potential parental susceptibility factors, we set out to determine the parent of origin of the mutations or deletions, and following this, to determine if birth order or parental age were significant factors, as well as whether mutation susceptibility was related to any sequence variants in cis with the mutant allele. METHODS: We analyzed 23 cases of de novo disease to determine the parental origin of SOX2 mutations and deletions using informative single nucleotide polymorphisms and a molecular haplotyping approach. We examined parental ages for SOX2 mutation and deletion cases, compared these with the general population, and adjusted for birth order. RESULTS: Although the majority of subjects had mutations or deletions that arose in the paternal germline (5/7 mutation and 5/8 deletion cases), there was no significant paternal bias for new mutations (binomial test, p=0.16) or deletions (binomial test, p=0.22). For both mutation and deletion cases, there was no significant association between any single nucleotide polymorphism allele and the mutant chromosome (p>0.05). Parents of the subjects with mutations were on average older at the birth of the affected child than the general population by 3.8 years (p=0.05) for mothers and 3.3 years (p=0.66) for fathers. Parents of the subjects with deletions were on average younger than the general population by 3.0 years (p=0.17) for mothers and 2.1 years (p=0.19) for fathers. Combining these data, the difference in pattern of parental age between the subjects with deletions and mutations was evident, with a difference of 6.5 years for mothers (p=0.05) and 5.0 years for fathers (p=0.22), with the mothers and fathers of subjects with mutations being older than the mothers and fathers of subjects with deletions. We observed that 14 of the 23 (61%) affected children were the first-born child to their mother, with 10/15 of the mutation cases (66%) and 4/8 deletion cases (50%) being first born. This is in comparison to 35% of births with isolated congenital anomalies overall who are first born (p=0.008). CONCLUSIONS: Sporadic SOX2 mutations and deletions arose in both the male and female germlines. In keeping with several genetic disorders, we found that SOX2 mutations were associated with older parental age and the difference was statistically significant for mothers (p=0.05), whereas, although not statistically significant, SOX2 deletion cases had younger parents. With the current sample size, there was no evidence that sequence variants in cis surrounding SOX2 confer susceptibility to either mutations or deletions.


Assuntos
Anoftalmia/genética , Pais , Fatores de Transcrição SOXB1/genética , Adolescente , Adulto , Inglaterra , Feminino , Humanos , Masculino , Síndrome , País de Gales , Adulto Jovem
13.
Hum Mutat ; 31(7): 781-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506283

RESUMO

Bone morphogenetic protein (BMP) signaling regulates a range of cellular processes and plays an important role in the specification and patterning of the early embryo. However, due to the functional redundancy of BMP ligands and receptors in tissues where they are coexpressed, relatively little is known about the role of individual BMP ligands in human disease. Here we report heterozygous variations in BMP7, including a frameshift, missense, and Kozak sequence mutation, in individuals with developmental eye anomalies and a range of systemic abnormalities, including developmental delay, deafness, scoliosis, and cleft palate. We determined that BMP7 is expressed in the developing eye, brain, and ear in human embryos in a manner consistent with the phenotype seen in our mutation cases. These data establish BMP7 as an important gene in human eye development, and suggest that BMP7 should be considered during clinical evaluation of individuals with developmental eye anomalies.


Assuntos
Proteína Morfogenética Óssea 7/genética , Anormalidades Congênitas/genética , Predisposição Genética para Doença , Mutação , Sequência de Aminoácidos , Sequência de Bases , Osso e Ossos/anormalidades , Osso e Ossos/metabolismo , Encéfalo/anormalidades , Encéfalo/metabolismo , Análise Mutacional de DNA , Orelha/anormalidades , Otopatias/genética , Anormalidades do Olho/genética , Hibridização In Situ , Dados de Sequência Molecular , Palato/anormalidades , Palato/metabolismo , Homologia de Sequência de Aminoácidos
14.
Hum Genet ; 127(6): 721-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20396904

RESUMO

Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.


Assuntos
Anoftalmia/genética , Hormônio do Crescimento Humano/deficiência , Mutação de Sentido Incorreto , Fatores de Transcrição Otx/genética , Pré-Escolar , Anormalidades do Olho/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Homeodomínio LIM , Masculino , Adeno-Hipófise/anormalidades , Fatores de Transcrição/genética
15.
Hum Genet ; 128(1): 51-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20414678

RESUMO

Mutations in the visual system homeobox 2 gene (VSX2, also known as CHX10), which encodes a retinal transcription factor from the paired homeobox family, have been implicated in recessive isolated microphthalmia. In this study, we use genome-wide single nucleotide polymorphism homozygosity mapping in unrelated small consanguineous pedigrees and a candidate gene approach to identify three further causative VSX2 mutations (two novel and one previously reported). All affected individuals with homozygous mutations had bilateral anophthalmia or severe microphthalmia with absent vision. In addition, we identified a novel inner retinal dystrophy in two carrier parents suggesting a semidominant effect for this particular VSX2 mutation. A further study of individuals with retinal degenerative conditions may reveal a causative role for heterozygous mutations in VSX2.


Assuntos
Genes Recessivos , Proteínas de Homeodomínio/genética , Microftalmia/genética , Mutação , Degeneração Retiniana/genética , Fatores de Transcrição/genética , Adulto , Criança , Consanguinidade , Genes Dominantes , Homozigoto , Humanos , Linhagem , Polimorfismo de Nucleotídeo Único
16.
BMC Genet ; 11: 102, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070663

RESUMO

BACKGROUND: The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans. RESULTS: In this study, we show that the severe reduction of eye size in the outm233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed. CONCLUSIONS: This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.


Assuntos
Olho/embriologia , Fator 6 de Diferenciação de Crescimento/genética , Microftalmia/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Substituição de Aminoácidos , Animais , Apoptose , Proliferação de Células , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Tamanho do Órgão , Fenótipo , Peixe-Zebra/embriologia
17.
Hum Mutat ; 30(10): 1378-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19708017

RESUMO

FOXE3 is a lens-specific transcription factor with a highly conserved forkhead domain previously implicated in congenital primary aphakia and anterior segment dysgenesis. Here, we identify new recessive FOXE3 mutations causative for microphthalmia, sclerocornea, primary aphakia, and glaucoma in two extended consanguineous families by SNP array genotyping followed by a candidate gene approach. Following an additional screen of 236 subjects with developmental eye anomalies, we report two further novel heterozygous mutations segregating in a dominant fashion in two different families. Although the dominant mutations were penetrant, they gave rise to highly variable phenotypes including iris and chorioretinal colobomas, Peters' anomaly, and isolated cataract (cerulean type and early onset adult nuclear and cortical cataract). Using in situ hybridization in human embryos, we demonstrate expression of FOXE3 restricted to lens tissue, predominantly in the anterior epithelium, suggesting that the extralenticular phenotypes caused by FOXE3 mutations are most likely to be secondary to abnormal lens formation. Our findings suggest that mutations in FOXE3 can give rise to a broad spectrum of eye anomalies, largely, but not exclusively related to lens development, and that both dominant and recessive inheritance patterns can be represented. We suggest including FOXE3 in the diagnostic genetic screening for these anomalies.


Assuntos
Anormalidades do Olho/genética , Fatores de Transcrição Forkhead/genética , Genes Dominantes , Genes Recessivos , Sequência de Bases , Primers do DNA , Feminino , Fatores de Transcrição Forkhead/química , Genótipo , Humanos , Hibridização In Situ , Masculino , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único
18.
Hum Genet ; 126(6): 791-803, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19685247

RESUMO

Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos--sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.


Assuntos
Anormalidades do Olho/genética , Olho/embriologia , Retina/anormalidades , Fator de Transcrição AP-2/genética , Adulto , Animais , Síndrome Brânquio-Otorrenal/genética , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Morfogênese/genética , Mutação , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
Mol Vis ; 15: 1366-73, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19626132

RESUMO

PURPOSE: Haploinsufficiency through mutation or deletion of the forkhead transcription factor, FOXC1, causes Axenfeld-Rieger anomaly, which manifests as a range of anterior segment eye defects and glaucoma. The aim of this study is to establish whether mutation of FOXC1 contributes toward other developmental eye anomalies, namely anophthalmia, microphthalmia, and coloboma. METHODS: The coding sequence and 3;-UTR of FOXC1 was analyzed in 114 subjects with severe developmental eye anomalies by bidirectional direct sequencing. RESULTS: Four coding FOXC1 variations (two novel missense variations, one insertion, and one novel deletion) were identified in the cohort. Two noncoding variations were also identified in the 3'-UTR. The missense mutations were c.889C_T and c.1103C_A, resulting in p.Pro297Ser and p.Thr368Asn, respectively. The c.889C_T transition was identified in 19 of the 100 unaffected control samples. The c.1103C_A transversion resulted in a conservative substitution in an unconserved amino acid and was deemed unlikely to be pathogenic. A c.1142_1144insGCG change resulting in p.Gly380ins, which was previously associated with kidney anomalies, was identified in 44 of the 114 affected individuals. This variation was also present in 29 of the 87 unaffected controls and is therefore likely to be a polymorphism. A c.91_100delCGGCGGCCG deletion resulting in p.Ala31_33del was identified in one individual. This deletion segregated with the moderately affected mother and unaffected maternal grandfather of the proband. This deletion was identified in one of the 307 unaffected controls. CONCLUSIONS: Our data suggests a potential susceptibility role for FOXC1 in generating severe eye pathologies. However, on the basis of these results, it is unlikely that FOXC1 mutation is a major causative factor of anophthalmia, microphthalmia, and coloboma.


Assuntos
Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Fatores de Transcrição Forkhead/genética , Mutação/genética , Sequência de Bases , Análise Mutacional de DNA , Humanos , Dados de Sequência Molecular , Fenótipo
20.
Am J Med Genet A ; 146A(14): 1842-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553518

RESUMO

Donnai-Barrow syndrome [Faciooculoacousticorenal (FOAR) syndrome; DBS/FOAR] is a rare autosomal recessive disorder resulting from mutations in the LRP2 gene located on chromosome 2q31.1. We report a unique DBS/FOAR patient homozygous for a 4-bp LRP2 deletion secondary to paternal uniparental isodisomy for chromosome 2. The propositus inherited the mutation from his heterozygous carrier father, whereas the mother carried only wild-type LRP2 alleles. This is the first case of DBS/FOAR resulting from uniparental disomy (UPD) and the fourth published case of any paternal UPD 2 ascertained through unmasking of an autosomal recessive disorder. The absence of clinical symptoms above and beyond the classical phenotype in this and the other disorders suggests that paternal chromosome 2 is unlikely to contain imprinted genes notably affecting either growth or development. This report highlights the importance of parental genotyping in order to give accurate genetic counseling for autosomal recessive disorders.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 2/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Dissomia Uniparental/genética , Adulto , Agenesia do Corpo Caloso , Sequência de Bases , Criança , DNA/genética , Encefalocele/genética , Feminino , Perda Auditiva Neurossensorial/genética , Hérnia Inguinal/congênito , Hérnia Inguinal/genética , Homozigoto , Humanos , Hipertelorismo/genética , Masculino , Mutação , Miopia/genética , Linhagem , Proteinúria/genética , Deleção de Sequência , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA