Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 68(7): 1421-1434, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32036619

RESUMO

Chronic neuroinflammation driven by microglia is a characteristic feature associated with numerous neurodegenerative diseases. While acute inflammation can assist with recovery and repair, prolonged microglial pro-inflammatory responses are known to exacerbate neurodegenerative processes. Yet, detrimental outcomes of extended microglial activation are counterbalanced by beneficial outcomes including phagocytosis and release of trophic factors promoting neuronal viability. Our past work has shown that the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a key signaling hub driving pro-inflammatory microglia responses, but the signaling pathway maintaining PARP-1 activation remains elusive. While best understood for its role in promoting DNA repair, our group has shown that PARP-1 activity can be stimulated via Ca2+ influx-dependent ERK1/2-mediated phosphorylation. However, to date, the route of Ca2+ entry responsible for stimulating PARP-1 has not been identified. A likely candidate is via Ca2+ -permeable transient receptor potential melastatin 2 (TRPM2) channels activated downstream of PARP-1 in a cascade that involves ADP-ribose (ADPR) production by poly(ADP-ribose) glycohydrolase (PARG). Here we demonstrate that NMDA receptor (NMDAR) stimulation in primary cultured microglia induces their proliferation, morphological activation and release of pro-inflammatory mediators. These responses were contingent on the recruitment of PARP-1, PARG and Ca2+ permeable TRPM2 channels. Furthermore, we show that Ca2+ influx is necessary to activate PARP-1/TRPM2 signaling, in an ERK1/2-dependent, but DNA damage independent, manner. Our findings, showing that PARP-1/TRPM2 mediate the pro-inflammatory effects of NMDAR stimulation, provides a unifying mechanism linking elevated glutamate levels to chronic neuroinflammation.


Assuntos
Morte Celular/fisiologia , Inflamação/metabolismo , Transporte de Íons/fisiologia , Microglia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo
2.
Nat Commun ; 14(1): 1394, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914633

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
3.
Mycobiology ; 40(1): 8-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22783128

RESUMO

In the present study, an attempt to evaluate the antimicrobial and antioxidant activity of fungal endophytes inhabiting Emblica officinalis has been made keeping in view the medicinal importance of the selected host plant in Indian traditional practices. A total of four endophytic fungi belonging to Phylum Ascomycetes were isolated from different parts of the plant which were characterized morphologically and by using rDNA-internal transcribed spacer. The most frequently isolated endophyte was Phomopsis sp. The antioxidant activity by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assay, and total phenol were evaluated using ethanolic extract of endophytic fungi. DPPH activities in all the ethanolic extract increased with the increase in concentrations. Endophytes, Phomopsis sp. and Xylaria sp. showed highest antioxidant activity and also had the higher levels of phenolics. Antimicrobial activity of fungal extract were tested against four bacteria namely, Escherichia coli MTCC730, Enteroccocus faecalis MTCC2729, Salmonella enterica ser. paratyphi MTCC735 and Streptococcus pyogenes MTCC1925, and the fungus Candida albicans MTCC183. In general, the fungal extracts inhibited the growth of test organisms except E. coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA