Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 15 Suppl 7: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25080362

RESUMO

BACKGROUND: Interactions between the epigenome and structural genomic variation are potentially bi-directional. In one direction, structural variants may cause epigenomic changes in cis. In the other direction, specific local epigenomic states such as DNA hypomethylation associate with local genomic instability. METHODS: To study these interactions, we have developed several tools and exposed them to the scientific community using the Software-as-a-Service model via the Genboree Workbench. One key tool is Breakout, an algorithm for fast and accurate detection of structural variants from mate pair sequencing data. RESULTS: By applying Breakout and other Genboree Workbench tools we map breakpoints in breast and prostate cancer cell lines and tumors, discriminate between polymorphic breakpoints of germline origin and those of somatic origin, and analyze both types of breakpoints in the context of the Human Epigenome Atlas, ENCODE databases, and other sources of epigenomic profiles. We confirm previous findings that genomic instability in human germline associates with hypomethylation of DNA, binding sites of Suz12, a key member of the PRC2 Polycomb complex, and with PRC2-associated histone marks H3K27me3 and H3K9me3. Breakpoints in germline and in breast cancer associate with distal regulatory of active gene transcription. Breast cancer cell lines and tumors show distinct patterns of structural mutability depending on their ER, PR, or HER2 status. CONCLUSIONS: The patterns of association that we detected suggest that cell-type specific epigenomes may determine cell-type specific patterns of selective structural mutability of the genome.


Assuntos
Algoritmos , Metilação de DNA , Epigenômica/métodos , Genoma Humano , Software , DNA/genética , DNA/metabolismo , Epigênese Genética , Instabilidade Genômica , Células Germinativas/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/genética
2.
BMC Bioinformatics ; 13 Suppl 13: S11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23320832

RESUMO

BACKGROUND: Microbial metagenomic analyses rely on an increasing number of publicly available tools. Installation, integration, and maintenance of the tools poses significant burden on many researchers and creates a barrier to adoption of microbiome analysis, particularly in translational settings. METHODS: To address this need we have integrated a rich collection of microbiome analysis tools into the Genboree Microbiome Toolset and exposed them to the scientific community using the Software-as-a-Service model via the Genboree Workbench. The Genboree Microbiome Toolset provides an interactive environment for users at all bioinformatic experience levels in which to conduct microbiome analysis. The Toolset drives hypothesis generation by providing a wide range of analyses including alpha diversity and beta diversity, phylogenetic profiling, supervised machine learning, and feature selection. RESULTS: We validate the Toolset in two studies of the gut microbiota, one involving obese and lean twins, and the other involving children suffering from the irritable bowel syndrome. CONCLUSIONS: By lowering the barrier to performing a comprehensive set of microbiome analyses, the Toolset empowers investigators to translate high-volume sequencing data into valuable biomedical discoveries.


Assuntos
Metagenômica/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Criança , Biologia Computacional , Trato Gastrointestinal/microbiologia , Humanos , Síndrome do Intestino Irritável/microbiologia , Metagenoma , Obesidade/genética , Filogenia , Software
3.
BMC Bioinformatics ; 11: 182, 2010 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-20380738

RESUMO

BACKGROUND: There is an increasing usage of ion mobility-mass spectrometry (IMMS) in proteomics. IMMS combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS). It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time that is determined by the collision cross-section of each peptide ion in a given experiment condition. A peptide ion's collision cross-section is related to the ion size and shape resulted from the peptide amino acid sequence and their modifications. This inherent relation between the drift time of peptide ion and peptide sequence indicates that the drift time of peptide ions can be used to infer peptide sequence and therefore, for peptide identification. RESULTS: This paper describes an artificial neural networks (ANNs) regression model for the prediction of peptide ion drift time in IMMS. Each peptide in this work was represented using three descriptors (i.e., molecular weight, sequence length and a two-dimensional sequence index). An ANN predictor consisting of four input nodes, three hidden nodes and one output node was constructed for peptide ion drift time prediction. For the model training and testing, a 10-fold cross-validation strategy was employed for three datasets each containing different charge states. Dataset one contains 212 singly-charged peptide ions, dataset two has 306 doubly-charged peptide ions, and dataset three has 77 triply-charged peptide ions. Our proposed method achieved 94.4%, 93.6% and 74.2% prediction accuracy for singly-, doubly- and triply-charged peptide ions, respectively. CONCLUSIONS: An ANN-based method has been developed for predicting the drift time of peptide ions in IMMS. The results achieved here demonstrate the effectiveness and efficiency of the prediction model. This work can enhance the confidence of protein identification by combining with current database search approaches for protein identification.


Assuntos
Espectrometria de Massas/métodos , Redes Neurais de Computação , Peptídeos/química , Proteômica/métodos , Íons/química , Proteínas/química
4.
Genome Announc ; 3(3)2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953173

RESUMO

Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA