Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Infect Dis ; 73(9): e2952-e2959, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098412

RESUMO

BACKGROUND: The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA by reverse-transcription polymerase chain reaction (PCR) does not necessarily indicate shedding of infective virions. There are limited data on the correlation between the isolation of SARS-CoV-2, which likely indicates infectivity, and PCR. METHODS: A total of 195 patients with Coronavirus disease 2019 were tested (outpatients, n = 178; inpatients, n = 12; and critically unwell patients admitted to the intensive care unit [ICU] patients, n = 5). SARS-CoV-2 PCR-positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was observed, PCR was performed on day 4 to confirm absence of virus replication. The cycle thresholds (Cts) of the day 4 PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined where Ctsample - Ctculture was ≥3. RESULTS: Of 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was isolated from 56 (24%), including in 28 of 181 (15%), 19 of 42 (45%), and 9 of 11 samples (82%) collected from outpatients, inpatients, and ICU patients, respectively. All 56 samples had Ctsample ≤32; CPE was observed in 46 (20%). The mean duration from symptom onset to culture positivity was 4.5 days (range, 0-18). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (P < .001) and ICU patients (P < .0001) compared with outpatients, and in samples with lower Ctsample. CONCLUSIONS: SARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Cuidados Críticos , Humanos , Testes Imunológicos , SARS-CoV-2 , Células Vero
2.
PLoS Pathog ; 10(1): e1003822, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391495

RESUMO

Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps) are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3) to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study identifies a novel multifunctional role for the C. jejuni CcmL chemoreceptor and illustrates its involvement in the chemotaxis pathway and subsequent survival of this organism in the host.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CACO-2 , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Galinhas , Gastroenterite/genética , Gastroenterite/metabolismo , Gastroenterite/microbiologia , Humanos
3.
Pathology ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38777739

RESUMO

Haemophilus influenzae, a causative agent of severe invasive infections such as meningitis, sepsis and pneumonia, is classified into encapsulated or typeable (represented by serotypes A to F) and non-typeable varieties (NTHi) by the presence or absence of the polysaccharide capsule. Invasive disease caused by H. influenzae type B (HIB) can be prevented through vaccination which remains the main disease control intervention in many countries. This study examined the genomic diversity of circulating H. influenzae strains associated with invasive disease in New South Wales, Australia, before and during the COVID-19 pandemic. Ninety-six isolates representing 95 cases of invasive H. influenzae infections (iHi) diagnosed between January 2017 and September 2022 were typed and characterised using whole genome sequencing. These cases were caused by serotypes A (n=24), B (n=35), E (n=3), F (n=2) and NTHi (n=32). There was an apparent decline in the number of iHi infections during the COVID-19 pandemic, with a corresponding increase in the proportion of iHi cases caused by serotype A (HIA), which returned to pre-pandemic levels in 2022. Fifteen isolates associated with HIB or non-typeable iHi were resistant to ß-lactams due to a PBP3 mutation or carriage of blaTEM-1. Further, capsular gene duplication was observed in HIB isolates but was not found in HIA. These findings provide important baseline genomic data for ongoing iHi surveillance and control.

4.
J Bacteriol ; 195(9): 1970-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435977

RESUMO

Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Ferritinas/genética , Ferritinas/metabolismo , Ligação Proteica
5.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146829

RESUMO

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired over 30 mutations in the spike protein (with 15 in the receptor-binding domain), raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three, and six months post-two doses of Pfizer-BioNTech BNT162b2 had a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres were boosted. Despite this increase, neutralising antibody titres were reduced fourfold for Omicron compared to lineage A.2.2 SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética
6.
Sci Signal ; 14(664)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402336

RESUMO

Campylobacter jejuni is a bacterial pathogen that is a common cause of enteritis in humans. We identified a previously uncharacterized type of sensory domain in the periplasmic region of the C. jejuni chemoreceptor Tlp10, termed the DAHL domain, that is predicted to have a bimodular helical architecture. Through two independent ligand-binding sites in this domain, Tlp10 responded to molecular aspartate, isoleucine, fumarate, malate, fucose, and mannose as attractants and to arginine, galactose, and thiamine as repellents. Tlp10 also recognized glycan ligands when present as terminal and intermediate residues of complex structures, such as the fucosylated human ganglioside GM1 and Lewisa antigen. A tlp10 mutant strain lacking the ligand-binding sites was attenuated in its ability to colonize avian caeca and to adhere to cultured human intestinal cells, indicating the potential involvement of the DAHL domain in host colonization and disease. The Tlp10 intracellular signaling domain interacted with the scaffolding proteins CheV and CheW, which couple chemoreceptors to intracellular signaling machinery, and with the signaling domains of other chemoreceptors, suggesting a key role for Tlp10 in signal transduction and incorporation into sensory arrays. We identified the DAHL domain in other bacterial signal transduction proteins, including the essential virulence induction protein VirA from the plant pathogen Agrobacterium tumefaciens Together, these results suggest a potential link between Tlp10 and C. jejuni virulence.


Assuntos
Campylobacter jejuni/metabolismo , Quimiotaxia , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arginina/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Células CACO-2 , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Fucose/metabolismo , Fumaratos/metabolismo , Galactose/metabolismo , Células HCT116 , Humanos , Isoleucina/metabolismo , Ligantes , Malatos/metabolismo , Manose/metabolismo , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Tiamina/metabolismo , Virulência
7.
Virus Evol ; 6(1): veaa027, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32296544

RESUMO

The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea, and Iran. Phylogenetic analyses of whole-genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA