Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 19(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356814

RESUMO

Skeletal biopolymers and proteins in marine organisms are present as complex mixtures and have great potential applications in the biomedical field [...].


Assuntos
Organismos Aquáticos , Proteínas , Biopolímeros
2.
Mar Drugs ; 19(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436248

RESUMO

The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.


Assuntos
Antivirais/química , Organismos Aquáticos/química , Tratamento Farmacológico da COVID-19 , Animais , Antivirais/farmacologia , Humanos , Polifosfatos/farmacologia , Polifosfatos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo
3.
J Immunol ; 201(12): 3580-3586, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397032

RESUMO

Organized tissue structure in the secondary lymphoid organs (SLOs) tightly depends on the development of fibroblastic stromal cells (FSCs) of mesenchymal origin; however, the mechanisms of this relationship are poorly understood. In this study, we specifically inactivated the canonical NF-κB pathway in FSCs in vivo by conditionally inducing IκBα mutant in a Ccl19-IκBSR mouse system in which NF-κB activity is likely to be suppressed in fetal FSC progenitors. Given that NF-κB activation in fetal FSCs is essential for SLO development, the animals were expected to lack SLOs. However, all SLOs were preserved in Ccl19-IκBSR mice. Instead, the T cell area was severely disturbed by the lack of CCL21-expressing FSCs, whereas the follicles and associated FSC networks were formed. Fate mapping revealed that IκBSR-expressing cells constituted only a small fraction of stromal compartment outside the follicles. Taken together, our findings indicate an essential role of the canonical NF-κB pathway activity in the development of three FSC subsets common to SLOs and suggest transient or stochastic CCL19 expression in FSC progenitors and a compensatory differentiation program of follicular FSCs.


Assuntos
Fibroblastos/fisiologia , Tecido Linfoide/imunologia , Células-Tronco Mesenquimais/fisiologia , NF-kappa B/metabolismo , Linfócitos T/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Transdução de Sinais
4.
Mar Drugs ; 17(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769916

RESUMO

The extraction and purification of collagen are of great interest due to its biological function and medicinal applications. Although marine invertebrates are abundant in the animal kingdom, our knowledge of their extracellular matrix (ECM), which mainly contains collagen, is lacking. The functions of collagen isolated from marine invertebrates remain an untouched source of the proteinaceous component in the development of groundbreaking pharmaceuticals. This review will give an overview of currently used collagens and their future applications, as well as the methodological issues of collagens from marine invertebrates for potential drug discovery.


Assuntos
Organismos Aquáticos/química , Colágeno/química , Colágeno/uso terapêutico , Matriz Extracelular/química , Invertebrados/química , Animais , Descoberta de Drogas , Humanos
5.
Ecotoxicol Environ Saf ; 150: 335-343, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29304476

RESUMO

Arsenic contamination of drinking water, which can occur naturally or because of human activities such as mining, is the single most important public health issue in Bangladesh. Fifty out of the 64 districts in the country have arsenic concentration of groundwater exceeding 50µgL-1, the Bangladeshi threshold, affecting 35-77 million people or 21-48% of the total population. Chronic arsenic exposure through drinking water and other dietary sources is an important public health issue worldwide affecting hundreds of millions of people. Consequently, arsenic poisoning has attracted the attention of researchers and has been profiled extensively in the literature. Most of the literature has focused on characterising arsenic poisoning and factors associated with it. However, studies examining the socio-economic aspects of chronic exposure of arsenic through either drinking water or foods remain underexplored. The objectives of this paper are (i) to review arsenic exposure pathways to humans; (ii) to summarise public health impacts of chronic arsenic exposure; and (iii) to examine socio-economic implications and consequences of arsenicosis with a focus on Bangladesh. This scoping review evaluates the contributions of different exposure pathways by analysing arsenic concentrations in dietary and non-dietary sources. The socio-economic consequences of arsenicosis disease in Bangladesh are discussed in this review by considering food habits, nutritional status, socio-economic conditions, and socio-cultural behaviours of the people of the country. The pathways of arsenic exposure in Bangladesh include drinking water, various plant foods and non-dietary sources such as soil. Arsenic affected people are often abandoned by the society, lose their jobs and get divorced and are forced to live a sub-standard life. The fragile public health system in Bangladesh has been burdened by the management of thousands of arsenicosis victims in Bangladesh.


Assuntos
Intoxicação por Arsênico/epidemiologia , Arsênio/análise , Exposição Ambiental/análise , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Bangladesh , Água Potável/química , Água Subterrânea/química , Humanos , Saúde Pública , Risco , Fatores Socioeconômicos
6.
Mar Drugs ; 14(9)2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626432

RESUMO

In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.


Assuntos
Organismos Aquáticos/química , Proteínas/química , Proteínas/uso terapêutico , Animais , Regeneração Óssea/efeitos dos fármacos , Descoberta de Drogas , Humanos , Polissacarídeos/farmacologia , Esqueleto
7.
J Water Health ; 13(2): 371-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042970

RESUMO

In an attempt to obtain a conservative estimate of virus removal during slow sand and river bank filtration, a somatic phage was isolated with slow decay and poor adsorption to coarse sand. We continuously fed a phage suspension to a 7-m infiltration path and measured the phage removal. In a second set of experiments, we fed the phage suspension to 1-m long columns run at different pore water velocities. Using the data obtained, a mathematical model was constructed describing removal vs. pore water velocity (PWV), assuming different statistical distributions of the adsorption coefficient λ. The bimodal distribution best fit the results for PWVs higher than 1 m/d. It predicted a removal of approximately 4 log10 after 50 days infiltration at 1 m/d. At PWVs below 1 m/d the model underestimated removal. Sand-bound phages dissociated slowly into the liquid phase, with a detachment constant kdet of 2.6 × 10⁻5. This low kdet suggests that river bank filtration plants should be intermittently operated when viral overload is suspected, e.g. during flooding events or at high water-marks in rivers, in order for viruses to become soil-associated during the periods of standstill. Resuming filtration will allow only a very slow virus release from the soil.


Assuntos
Bacteriófagos/isolamento & purificação , Filtração/instrumentação , Microbiologia da Água , Movimentos da Água , Filtração/métodos , Rios , Solo , Fatores de Tempo , Purificação da Água/instrumentação , Purificação da Água/métodos
8.
Proteomics ; 14(21-22): 2600-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25044550

RESUMO

The Japanese red and pink corals are known to be precious because of their commercial value resulting from their use in ornaments, jewelry, and medicine. Precious corals are very interesting models for biomineralization studies and possess two different skeletal structures: an axial skeleton and an endoskeleton (sclerites). Although it has long been known that the organic matrix proteins existing in coral skeletons are critical for the oriented precipitation of CaCO3 crystals, these proteins in moderate deep-sea Japanese precious corals remain uncharacterized. Therefore, in this study, we performed skeletal whole proteome analyses using 1D and 2D electrophoresis, nano-LC, and MALDI-TOF-TOF MS. We identified a total of 147 functional coral skeletal organic matrix proteins (120 from the sclerites and 36 from the axial skeleton), including two calcium-binding calmodulin. Among the organic matrix proteins identified, nine key proteins are highly typical and common in both skeletons. Strong glycosylation activity, which is essential for skeletal formation in calcifying organisms, was detected in both skeletons. This work demonstrates unique biomineralization-related proteins in precious corals and provides the first description of the major proteinaceous components of CaCO3 minerals in precious corals, enabling the comparative investigation of biocalcification in other octocorals.


Assuntos
Antozoários/química , Antozoários/citologia , Proteoma/análise , Animais , Antozoários/fisiologia , Calcificação Fisiológica , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Eletroforese em Gel Bidimensional , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Ecotoxicol Environ Saf ; 100: 53-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24433791

RESUMO

Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers.


Assuntos
Contaminação de Alimentos/análise , Metais Pesados/análise , Oryza/química , Poluentes do Solo/análise , Verduras/química , Austrália , Dieta , Humanos
10.
Ecotoxicol Environ Saf ; 106: 126-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24836887

RESUMO

In the environment, arsenic (As) exists in a number of chemical species, and arsenite (As(III)) and arsenate (As(V)) dominate in freshwater systems. Toxicity of As species to aquatic organisms is complicated by their interaction with chemicals in water such as phosphate that can influence the bioavailability and uptake of As(V). In the present study, the toxicities of As(III), As(V) and dimethylarsinic acid (DMA) to three freshwater organisms representing three phylogenetic groups: a phytoplankton (Chlorella sp. strain CE-35), a floating macrophyte (Lemna disperma) and a cladoceran grazer (Ceriodaphnia cf. dubia), were determined using acute and growth inhibition bioassays (EC50) at a range of total phosphate (TP) concentrations in OECD medium. The EC50 values of As(III), As(V) and DMA were 27 ± 10, 1.15 ± 0.04 and 19 ± 3 mg L(-1) for Chlorella sp. CE-35; 0.57 ± 0.16, 2.3 ± 0.2 and 56 ± 15 mg L(-1) for L. disperma, and 1.58 ± 0.05, 1.72 ± 0.01 and 5.9 ± 0.1 mg L(-1) for C. cf. dubia, respectively. The results showed that As(III) was more toxic than As(V) to L. disperma; however, As(V) was more toxic than As(III) to Chlorella sp. CE-35. The toxicities of As(III) and As(V) to C. cf. dubia were statistically similar (p>0.05). DMA was less toxic than iAs species to L. disperma and C. cf. dubia, but more toxic than As(III) to Chlorella sp. CE-35. The toxicity of As(V) to Chlorella sp. CE-35 and L. disperma decreased with increasing TP concentrations in the growth medium. Phosphate concentrations did not influence the toxicity of As(III) to either organism. Chlorella sp. CE-35 showed the ability to reduce As(V) to As(III), indicating a substantial influence of phytoplankton on As biogeochemistry in freshwater aquatic systems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Araceae/efeitos dos fármacos , Arsênio/toxicidade , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Cladocera/efeitos dos fármacos , Fitoplâncton/metabolismo , Animais , Araceae/metabolismo , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/química , Arsênio/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Biotransformação , Cladocera/metabolismo , Fosfatos/química
11.
Micromachines (Basel) ; 14(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984915

RESUMO

Additive manufacturing (AM), an enabler of Industry 4.0, recently opened limitless possibilities in various sectors covering personal, industrial, medical, aviation and even extra-terrestrial applications. Although significant research thrust is prevalent on this topic, a detailed review covering the impact, status, and prospects of artificial intelligence (AI) in the manufacturing sector has been ignored in the literature. Therefore, this review provides comprehensive information on smart mechanisms and systems emphasizing additive, subtractive and/or hybrid manufacturing processes in a collaborative, predictive, decisive, and intelligent environment. Relevant electronic databases were searched, and 248 articles were selected for qualitative synthesis. Our review suggests that significant improvements are required in connectivity, data sensing, and collection to enhance both subtractive and additive technologies, though the pervasive use of AI by machines and software helps to automate processes. An intelligent system is highly recommended in both conventional and non-conventional subtractive manufacturing (SM) methods to monitor and inspect the workpiece conditions for defect detection and to control the machining strategies in response to instantaneous output. Similarly, AM product quality can be improved through the online monitoring of melt pool and defect formation using suitable sensing devices followed by process control using machine learning (ML) algorithms. Challenges in implementing intelligent additive and subtractive manufacturing systems are also discussed in the article. The challenges comprise difficulty in self-optimizing CNC systems considering real-time material property and tool condition, defect detections by in-situ AM process monitoring, issues of overfitting and underfitting data in ML models and expensive and complicated set-ups in hybrid manufacturing processes.

12.
J Biol Chem ; 286(36): 31638-49, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768106

RESUMO

Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called "calcite and aragonite seas." Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that -OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature.


Assuntos
Antozoários/metabolismo , Carbonato de Cálcio/metabolismo , Proteínas/fisiologia , Animais , Cálcio , Espaço Extracelular/metabolismo , Magnésio , Água do Mar/química
13.
Environ Res ; 116: 118-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22534144

RESUMO

The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic environment (marine and freshwater) have been studied extensively by several research groups during last couple of decades. However, most of those studies have been conducted in marine waters, and the results are available in a number of reviews. Speciation, bioaccumulation, and biotransformation of arsenic in freshwaters have been studied in recent years. Although inorganic arsenic (iAs) species dominates in both marine and freshwaters, it is biotransformed to methyl and organoarsenic species by aquatic organisms. Phytoplankton is considered as a major food source for the organisms of higher trophic levels in the aquatic food chain, and this autotrophic organism plays important role in biotransformation and distribution of arsenic species in the aquatic environment. Bioaccumulation and biotransformation of arsenic by phytoplankton, and trophic transfer of arsenic in marine and freshwater food chains have been important concerns because of possible human health effects of the toxic metalloid from dietary intake. To-date, most of the studies on arsenic biotransformation, speciation, and trophic transfer have focused on marine environments; little is known about these processes in freshwater systems. This article has been reviewed the bioaccumulation, biotransformation, and trophic transfer of arsenic in marine and freshwater food chain.


Assuntos
Organismos Aquáticos/metabolismo , Arsenicais/farmacocinética , Cadeia Alimentar , Água Doce/química , Água do Mar/química , Poluentes Químicos da Água/farmacocinética , Animais , Organismos Aquáticos/química , Arsenicais/análise , Processos Autotróficos , Biota , Biotransformação , Distribuição Tecidual , Poluentes Químicos da Água/análise
14.
J Environ Manage ; 99: 61-75, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22322128

RESUMO

This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool.


Assuntos
Técnicas de Apoio para a Decisão , Água Subterrânea , Abastecimento de Água , Sistemas de Informação Geográfica , Software
15.
Bull Environ Contam Toxicol ; 88(3): 311-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22139332

RESUMO

Straighthead is a physiological disorder of rice (Oryza sativa L.) that results in sterile florets with distorted lemma and palea, and the panicles or heads may not form at all in extreme cases. Heads remain upright at maturity, hence the name 'straighthead'. The diseased panicles may not emerge from the flag leaf sheath when the disease is severe. Straighthead disease in rice results in poorly developed panicles and significant yield loss. Although other soil physicochemical factors involved, arsenic contamination in soil has also been reported to be closely associated with straighthead of rice. Monosodium methanearsonate has been a popular herbicide in cotton production in the USA, which has shown to cause injuries in rice that are similar to straighthead. Since toxicity of inorganic arsenic (iAs) is higher than other forms of arsenic, it may produce a more severe straighthead disorder in rice. The use of iAs-rich groundwater for irrigation, and the increase of iAs concentrations in agricultural soil in arsenic epidemic South and South-East Asia may cause a high incidence of straighthead in rice, resulting in a threat to sustainable rice production in this region.


Assuntos
Agricultura/métodos , Arsênio/toxicidade , Conservação dos Recursos Naturais/métodos , Oryza/efeitos dos fármacos , Doenças das Plantas/induzido quimicamente , Poluentes do Solo/toxicidade , Herbicidas/toxicidade , Oryza/fisiologia
16.
Bull Environ Contam Toxicol ; 88(5): 695-702, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22395199

RESUMO

Arsenic (As) contamination is an important environmental consequence in some parts of salinity-affected South (S) and South-East (SE) Asia. In this study, we investigated the individual and combined phytotoxicity of arsenic (As) [arsenate; As(V)] and salinity (NaCl) on early seedling growth (ESG) of saline-tolerant and non-tolerant rice varieties. Germination percentage (GP), germination speed (GS) and vigor index (VI) of both saline-tolerant and non-tolerant rice varieties decreased significantly (p > 0.01) with increasing As(V) and NaCl concentrations. The highest GP (91%) was observed for saline non-tolerant BRRI dhan28 and BRRI dhan49, while the lowest (62%) was for saline-tolerant BRRI dhan47. The ESG parameters, such as weights and relative lengths of plumule and radicle, also decreased significantly (p < 0.01) with increasing As(V) and NaCl concentrations. Relative radicle length was more affected than plumule length by As(V) and NaCl. Although VI of saline-tolerant and non-tolerant rice seedlings showed significant variation (p < 0.05), weights and lengths of plumule and radicle of different rice varieties did not show significant variation for As(V) and NaCl treatments. Results reveal that the combined phytotoxicity of As(V) and NaCl on rice seed germination and ESG are greater than their individual toxicities, and some saline-tolerant rice varieties are more resistant to the combined phytotoxicity of As(V) and NaCl than the saline non-tolerant varieties.


Assuntos
Arseniatos/toxicidade , Oryza/efeitos dos fármacos , Salinidade , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Agricultura/métodos , Sudeste Asiático , Bangladesh , Conservação dos Recursos Naturais , Germinação/efeitos dos fármacos , Água Subterrânea/química , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo/química
17.
Environ Monit Assess ; 173(1-4): 669-84, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20300834

RESUMO

The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.


Assuntos
Monitoramento Ambiental/métodos , Abastecimento de Água/análise , Bangladesh , Cidades
18.
Connect Tissue Res ; 50(5): 285-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19863387

RESUMO

Acidic proteins are generally thought to control mineral formation and growth in biocalcification. Analysis of proteinaceous components in the soluble and insoluble matrix fractions of sclerites in Sinularia polydactyla indicates that aspartic acid composes about 60% of the insoluble and 29% of the soluble matrix fractions. We previously analyzed aspartic acids in the matrix fractions (insoluble = 17 mol%; soluble = 38 mol%) of sclerites from a different type of soft coral, Lobophytum crassum, which showed comparatively lower aspartic acid-rich proteins than S. polydactyla. Thus, characterization of highly acidic proteins in the organic matrix of present species is an important first step toward linking function to individual proteins in soft coral. Here, we show that aspartic-acid rich proteins can control the CaCO(3) polymorph in vitro. The CaCO(3) precipitates in vitro in the presence of aspartic acid-rich proteins and 50 mM Mg(2+) was verified by Raman microprobe analysis. The matrix proteins of sclerites demonstrated that the aspartic-acid rich domain is crucial for the calcite precipitation in soft corals. The crystalline form of CaCO(3) in the presence of aspartic acid-rich proteins in vitro was identified by X-ray diffraction and, revealed calcitic polymorphisms with a strong (104) reflection. The structure of soft coral organic matrices containing aspartate-rich proteins and polysaccharides was assessed by Fourier transform infrared spectroscopy. These results strongly suggest that the aspartic acid-rich proteins within the organic matrix of soft corals play a key role in biomineralization regulation.


Assuntos
Antozoários/metabolismo , Ácido Aspártico/metabolismo , Carbonato de Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Antozoários/química , Ácido Aspártico/química , Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/química , Cristalização , Matriz Extracelular/química , Proteínas da Matriz Extracelular/química , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Modelos Animais , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteômica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Sci Total Environ ; 407(4): 1418-25, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19010517

RESUMO

Effects of eutrophication on arsenic speciation were studied in eutrophic Lake Kiba and mesotrophic Lake Biwa, Japan. By combining hydride generation atomic absorption spectrometry with ultraviolet irradiation, inorganic, methyl and ultraviolet-labile fractions of arsenic were determined. In both Lakes, inorganic species (As(V+III)) dominated over other forms of arsenic all the year round. Most of methylarsenic fraction was dimethylarsinic acid (DMAA), and the concentration of monomethylarsonic acid (MMAA) was below the detection limit. Measurements of size-fractioned arsenic concentrations in water column indicate that most of the DMAA was distributed in truly dissolved fraction (<10 kDa), while ultraviolet-labile fractions were distributed in particulate (>0.45 microm) and colloidal (10 kDa-0.45 microm) fractions. Arsenic speciation in eutrophic Lake Kiba fluctuated greatly with season. The ultraviolet-labile fractions were observed with the increase of DMAA from May to October, and they disappeared with the decrease of DMAA in January. In mesotrophic Lake Biwa, the ultraviolet-labile fractions of arsenic were not influenced as much as those in eutrophic Lake Kiba. On the other hand DMAA concentration was higher in Lake Biwa compared to that in Lake Kiba. The results suggest that the biosynthesis of complex organoarsenicals was enhanced by eutrophication, and the arsenic speciation would be influenced by the balance of biological processes in natural waters.


Assuntos
Arsenicais/análise , Eutrofização , Poluentes Químicos da Água/análise , Água Doce , Estações do Ano , Espectrofotometria Atômica
20.
Sci Rep ; 9(1): 11869, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417166

RESUMO

The organic matrix (OM) contained in marine calcifiers has a key role in the regulation of crystal deposition, such as crystalline structure, initiation of mineralization, inhibition, and biological/environmental control. However, the functional properties of the chitin-rich skeletal organic matrix on the biological aspect of crystallization in crustose coralline algae have not yet been investigated. Hence, the characterization of organic matrices in the biomineralization process of this species was studied to understand the functions of these key components for structural formation and mineralization of calcium carbonate crystals. We purified skeletal organic matrix proteins from this species and explored how these components are involved in the mineralization of calcium carbonate crystals and environmental control. Intriguingly, the analytical investigation of the skeletal OM revealed the presence of chitin in the crustose coralline alga Leptophytum foecundum. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the OM revealed a high molecular mass protein as 300-kDa. Analysis of glycosylation activity exposed two strong glycoproteins as 300-kDa and 240-kDa. Our study of the biominerals of live collected specimens found that in addition to Mg-calcite up to 30% aragonite were present in the skeleton. Our experiment demonstrated that the chitin-rich skeletal OM of coralline algae plays a key role in the biocalcification process by enabling the formation of Mg-calcite. In addition, this OM did not inhibit the formation of aragonite suggesting there is an as yet unidentified process in the living coralline that prevents the formation of aragonite in the living skeletal cell walls.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Quitina/metabolismo , Rodófitas/metabolismo , Biodiversidade , Biomineralização , Cristalização , Biologia Marinha , Minerais/química , Minerais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA