Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 50(19): 11273-11284, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36259663

RESUMO

Liquid-liquid phase separation (LLPS) has assumed a prominent role in biological cell systems, where it underpins the formation of subcellular compartments necessary for cell function. We investigated the underlying mechanism of LLPS in virus infected cells, where virus inclusion bodies are formed by an RNA-binding phosphoprotein (NS2) of Bluetongue virus to serve as sites for subviral particle assembly and virus maturation. We show that NS2 undergoes LLPS that is dependent on protein phosphorylation and RNA-binding and that LLPS occurrence is accompanied by a change in protein secondary structure. Site-directed mutagenesis identified two critical arginine residues in NS2 responsible for specific RNA binding and thus for NS2-RNA complex driven LLPS. Reverse genetics identified the same residues as essential for VIB assembly in infected cells and virus viability. Our findings suggest that a specific arginine-RNA interaction in the context of a phosphorylated state drives LLPS in this, and possibly other, virus infections.


Assuntos
Vírus Bluetongue , Montagem de Vírus , Animais , Fosforilação , Montagem de Vírus/genética , Vírus Bluetongue/genética , RNA/metabolismo , Arginina/metabolismo
2.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759321

RESUMO

Many viruses use specific viral proteins to bind calcium ions (Ca2+) for stability or to modify host cell pathways; however, to date, no Ca2+ binding protein has been reported in bluetongue virus (BTV), the causative agent of bluetongue disease in livestock. Here, using a comprehensive bioinformatics screening, we identified a putative EF-hand-like Ca2+ binding motif in the carboxyl terminal region of BTV nonstructural phosphoprotein 2 (NS2). Subsequently, using a recombinant NS2, we demonstrated that NS2 binds Ca2+ efficiently and that Ca2+ binding was perturbed when the Asp and Glu residues in the motif were substituted by alanine. Using circular dichroism analysis, we found that Ca2+ binding by NS2 triggered a helix-to-coil secondary structure transition. Further, cryo-electron microscopy in the presence of Ca2+ revealed that NS2 forms helical oligomers which, when aligned with the N-terminal domain crystal structure, suggest an N-terminal domain that wraps around the C-terminal domain in the oligomer. Further, an in vitro kinase assay demonstrated that Ca2+ enhanced the phosphorylation of NS2 significantly. Importantly, mutations introduced at the Ca2+ binding site in the viral genome by reverse genetics failed to allow recovery of viable virus, and the NS2 phosphorylation level and assembly of viral inclusion bodies (VIBs) were reduced. Together, our data suggest that NS2 is a dedicated Ca2+ binding protein and that calcium sensing acts as a trigger for VIB assembly, which in turn facilitates virus replication and assembly.IMPORTANCE After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly.


Assuntos
Vírus Bluetongue/química , Vírus Bluetongue/fisiologia , Cálcio/química , Proteínas não Estruturais Virais/química , Replicação Viral , Animais , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Dicroísmo Circular , Cricetinae , Cristalografia por Raios X , Estrutura Secundária de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668121

RESUMO

The frameshift mutants K192Sfs*7 and R153Sfs*41, of the polyglutamine tract-binding protein 1 (PQBP-1), are stable intrinsically disordered proteins (IDPs). They are each associated with the severe cognitive disorder known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Relative to the monomeric wild-type protein, these mutants are dimeric, contain more folded contents, and have higher thermal stabilities. Comparisons can be drawn to the toxic oligomerisation in the "conformational diseases", which collectively describe medical conditions involving a substantial protein structural transition in the pathogenic mechanism. At the molecular level, the end state of these diseases is often cytotoxic protein aggregation. The conformational disease proteins contain varying extents of intrinsic disorder, and the consensus pathogenesis includes an early oligomer formation. We reviewed the experimental characterisation of the toxic oligomers in representative cases. PQBP-1 mutant dimerisation was then compared to the oligomerisation of the conformational disease proteins. The PQBP-1 mutants are unique in behaving as stable soluble dimers, which do not further develop into higher oligomers or aggregates. The toxicity of the PQBP-1 mutant dimers lies in the native functions (in transcription regulation and possibly, RNA splicing) being compromised, rather than proceeding to aggregation. Other examples of stable IDP dimers were discussed and we speculated on the roles of IDP dimerisation in protein evolution.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura , Genes Ligados ao Cromossomo X , Deficiência Intelectual/patologia , Proteínas Mutantes/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Deficiência Intelectual/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Multimerização Proteica , Splicing de RNA
4.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541863

RESUMO

The genomes of the Reoviridae, including the animal pathogen bluetongue virus (BTV), are multisegmented double-stranded RNA (dsRNA). During replication, single-stranded (ss) positive-sense RNA segments are packaged into the assembling virus capsid, triggering genomic dsRNA synthesis. However, exactly how this packaging event occurs is not clear. A minor capsid protein, VP6, unique for the orbiviruses, has been proposed to be involved in the RNA-packaging process. In this study, we sought to characterize the RNA binding activity of VP6 and its functional relevance. A novel proteomic approach was utilized to map the ssRNA/dsRNA binding sites of a purified recombinant protein and the genomic dsRNA binding sites of the capsid-associated VP6. The data revealed that each VP6 protein has multiple distinct RNA-binding regions and that only one region is shared between recombinant and capsid-associated VP6. A combination of targeted mutagenesis and reverse genetics identified the RNA-binding region that is essential for virus replication. Using an in vitro RNA-binding competition assay, a unique cell-free assembly assay, and an in vivo single-cycle replication assay, it was possible to identify a motif within the shared binding region that binds BTV ssRNA preferentially in a manner consistent with specific RNA recruitment during capsid assembly. These data highlight the critical roles that this unique protein plays in orbivirus genome packaging and replication.IMPORTANCE Genome packaging is a critical stage during virus replication. For viruses with segmented genomes, the genome segments need to be correctly packaged into a newly formed capsid. However, the detailed mechanism of this packaging is unclear. Here we focus on VP6, a minor viral protein of bluetongue virus, which is critical for genome packaging. We used multiple approaches, including a robust RNA-protein fingerprinting assay, to map the ssRNA binding sites of recombinant VP6 and the genomic dsRNA binding sites of capsid-associated VP6. By these means, together with virological and biochemical methods, we identify the viral RNA-packaging motif of a segmented dsRNA virus for the first time.


Assuntos
Vírus Bluetongue/crescimento & desenvolvimento , Vírus Bluetongue/genética , Proteínas do Capsídeo/genética , RNA Viral/metabolismo , Montagem de Vírus/genética , Animais , Sítios de Ligação/genética , Capsídeo/metabolismo , Linhagem Celular , Cricetinae , Genoma Viral/genética , RNA Viral/genética , Motivos de Ligação ao RNA/genética
5.
J Struct Biol ; 206(3): 305-313, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951824

RESUMO

Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear intrinsically disordered protein playing important roles in transcriptional regulation and RNA splicing during embryonic and postembryonic development. In human, its mutations lead to severe cognitive impairment known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Here, we report a combined biophysical study of two PQBP-1 frameshift mutants, K192Sfs*7 and R153Sfs*41. Both mutants are dimeric in solution, in contrast to the monomeric wild-type protein. These mutants contain more folded contents and have increased thermal stabilities. Using small-angle X-ray scattering data, we generated three-dimensional envelopes which revealed their overall flat shapes. We also described each mutant using an ensemble model based on a native-like initial pool with a dimeric structural core. PQBP-1 is known to repress transcription by way of interacting with the C-terminal domain of RNA polymerase II, which consists of 52 repeats of a consensus heptapeptide sequence YSPTSPS. We studied the binding of PQBP-1 variants to the labelled peptide which is phosphorylated at positions 2 and 5 (YpSPTpSPS) and found that this interaction is significantly weakened in the two mutants.


Assuntos
Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Transcrição Gênica , Fenômenos Biofísicos , Paralisia Cerebral/patologia , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Mutação da Fase de Leitura/genética , Genes Ligados ao Cromossomo X/genética , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica , Splicing de RNA/genética , Relação Estrutura-Atividade
6.
Methods Mol Biol ; 2199: 151-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33125649

RESUMO

The scattering profiles at small angles, obtained after an X-ray beam is incident on biological samples (protein), are nowadays successfully used to obtain important structural information. Small angle X-ray scattering (SAXS) is now helpful in providing information about shape, conformation, and assembly state of molecules, besides macromolecular folding-unfolding, aggregation, and extended conformations. The article discusses here a protocol to identify those fractions of heterogeneous proteins that are rich in homogeneous samples, testified by proper conformation and protein activity. The protocol in reference to a class of proteins known as metal binding (transporter) proteins or ion channels is discussed using applications of SAXS and metal radioisotopes. With requisite modifications, the protocol can be adapted to other classes of proteins.


Assuntos
Proteínas de Transporte/química , Metais/química , Radioisótopos/química , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919410

RESUMO

To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Receptores Virais/metabolismo , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Influenza Humana/imunologia , Influenza Humana/patologia , RNA Interferente Pequeno/genética , Ligação Viral , Internalização do Vírus , Replicação Viral
8.
PLoS One ; 6(11): e26186, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073150

RESUMO

1-naphthol (1N), 2-naphthol (2N) and 8-quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (K(b)) of these pollutants to HSA were moderate (10(4)-10(5) M(-1)). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39-5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy-entropy compensation (EEC). The difference observed between ΔC(p) (exp) and ΔC(p) (calc) are suggested to be caused by binding-induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants.


Assuntos
Calorimetria/métodos , Poluentes Ambientais/metabolismo , Albumina Sérica/metabolismo , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica , Espectrofotometria Ultravioleta , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA