Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Exp Biol ; 214(Pt 21): 3532-41, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21993781

RESUMO

Obligatory cave species exhibit dramatic trait modifications such as eye reduction, loss of pigmentation and an increase in touch receptors. As molecular studies of cave adaptation have largely concentrated on vertebrate models, it is not yet possible to probe for genetic universalities underlying cave adaptation. We have therefore begun to study the strongly cave-adapted small carrion beetle Ptomaphagus hirtus. For over 100 years, this flightless signature inhabitant of Mammoth Cave, the world's largest known cave system, has been considered blind despite the presence of residual lens structures. By deep sequencing of the adult head transcriptome, we discovered the transcripts of all core members of the phototransduction protein machinery. Combined with the absence of transcripts of select structural photoreceptor and eye pigmentation genes, these data suggest a reduced but functional visual system in P. hirtus. This conclusion was corroborated by a negative phototactic response of P. hirtus in light/dark choice tests. We further detected the expression of the complete circadian clock gene network in P. hirtus, raising the possibility of a role of light sensation in the regulation of oscillating processes. We speculate that P. hirtus is representative of a large number of animal species with highly reduced but persisting visual capacities in the twilight zone of the subterranean realm. These can now be studied on a broad comparative scale given the efficiency of transcript discovery by next-generation sequencing.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Cavernas , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Besouros/fisiologia , Transdução de Sinal Luminoso/genética , Adaptação Fisiológica/genética , Animais , Sequência de Bases , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Biologia Computacional , Demografia , Kentucky , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Estimulação Luminosa , Filogenia , Pigmentação/genética , Análise de Sequência de DNA
2.
J Child Neurol ; 35(4): 259-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31823681

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration. METHODS: A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration. RESULTS: We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1). CONCLUSION: Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.


Assuntos
Maconha Medicinal/uso terapêutico , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Gastrostomia , Humanos , Masculino , Maconha Medicinal/administração & dosagem , Resultado do Tratamento
3.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31660701

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Assuntos
Coenzima A/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Genótipo , Camundongos , Panteteína/farmacologia , Panteteína/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA