Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962259

RESUMO

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , SARS-CoV-2 , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , SARS-CoV-2/química , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
2.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833731

RESUMO

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transdução de Sinais/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Dano ao DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/genética , Células MCF-7 , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Fenótipo
3.
Brief Bioinform ; 22(2): 1543-1559, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197934

RESUMO

Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.


Assuntos
Aprendizado Profundo , Análise de Sistemas , Algoritmos , Biomarcadores/metabolismo , Doença/classificação , Registros Eletrônicos de Saúde , Genômica , Humanos , Metabolômica , Redes Neurais de Computação , Medicina de Precisão/métodos , Proteômica , Transcriptoma
4.
Genes Dev ; 28(24): 2712-25, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512559

RESUMO

Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Chaperonas de Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Papiloma/patologia , Neoplasias Cutâneas/patologia , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
5.
PLoS Pathog ; 15(3): e1007667, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901352

RESUMO

Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 1/patogenicidade , Chaperonas de Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Chaperonas de Histonas/genética , Humanos , Fatores de Transcrição/genética , Replicação Viral
6.
Genes Dev ; 27(16): 1787-99, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23934658

RESUMO

Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched "mesas" and H3K27me3-depleted "canyons." Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Histonas/metabolismo , Humanos , Metilação , Progéria/patologia , Estrutura Terciária de Proteína
7.
Nature ; 504(7479): 296-300, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24305049

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Genes p53/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética , Alelos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/genética , Humanos , Hidroxicloroquina/farmacologia , Metabolômica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/metabolismo , Via de Pentose Fosfato/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Análise de Sobrevida , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
8.
Nucleic Acids Res ; 45(20): 11673-11683, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981850

RESUMO

The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/virologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Chaperonas de Histonas/genética , Chaperonas de Histonas/imunologia , Humanos , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/virologia , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiologia , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
9.
Biochim Biophys Acta ; 1819(3-4): 322-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459734

RESUMO

Cellular senescence is an irreversible proliferation arrest, thought to contribute to tumor suppression, proper wound healing and, perhaps, tissue and organismal aging. Two classical tumor suppressors, p53 and pRB, control cell cycle arrest associated with senescence. Profound molecular changes occur in cells undergoing senescence. At the level of chromatin, for example, senescence associated heterochromatic foci (SAHF) form in some cell types. Chromatin is inherently dynamic and likely needs to be actively maintained to achieve a stable cell phenotype. In proliferating cells chromatin is maintained in conjunction with DNA replication, but how non-proliferating cells maintain chromatin structure is poorly understood. Some histone variants, such as H3.3 and macroH2A increase as cells undergo senescence, suggesting histone variants and their associated chaperones could be important in chromatin structure maintenance in senescent cells. Here, we discuss options available for senescent cells to maintain chromatin structure and the relative contribution of histone variants and chaperones in this process. This article is part ofa Special Issue entitled: Histone chaperones and chromatin assembly.


Assuntos
Senescência Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/fisiologia , Animais , Proliferação de Células , Reparo do DNA/fisiologia , Chaperonas de Histonas/fisiologia , Humanos
10.
JMIR Res Protoc ; 13: e50733, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354037

RESUMO

BACKGROUND: Health organizations and countries around the world have found it difficult to control the spread of COVID-19. To minimize the future impact on the UK National Health Service and improve patient care, there is a pressing need to identify individuals who are at a higher risk of being hospitalized because of severe COVID-19. Early targeted work was successful in identifying angiotensin-converting enzyme-2 receptors and type II transmembrane serine protease dependency as drivers of severe infection. Although a targeted approach highlights key pathways, a multiomics approach will provide a clearer and more comprehensive picture of severe COVID-19 etiology and progression. OBJECTIVE: The COVID-19 Response Study aims to carry out an integrated multiomics analysis to identify biomarkers in blood and saliva that could contribute to host susceptibility to SARS-CoV-2 and the development of severe COVID-19. METHODS: The COVID-19 Response Study aims to recruit 1000 people who recovered from SARS-CoV-2 infection in both community and hospital settings on the island of Ireland. This protocol describes the retrospective observational study component carried out in Northern Ireland (NI; Cohort A); the Republic of Ireland cohort will be described separately. For all NI participants (n=519), SARS-CoV-2 infection has been confirmed by reverse transcription-quantitative polymerase chain reaction. A prospective Cohort B of 40 patients is also being followed up at 1, 3, 6, and 12 months postinfection to assess longitudinal symptom frequency and immune response. Data will be sourced from whole blood, saliva samples, and clinical data from the electronic care records, the general health questionnaire, and a 12-item general health questionnaire mental health survey. Saliva and blood samples were processed to extract DNA and RNA before whole-genome sequencing, RNA sequencing, DNA methylation analysis, microbiome analysis, 16S ribosomal RNA gene sequencing, and proteomic analysis were performed on the plasma. Multiomics data will be combined with clinical data to produce sensitive and specific prognostic models for severity risk. RESULTS: An initial demographic and clinical profile of the NI Cohort A has been completed. A total of 249 hospitalized patients and 270 nonhospitalized patients were recruited, of whom 184 (64.3%) were female, and the mean age was 45.4 (SD 13) years. High levels of comorbidity were evident in the hospitalized cohort, with cardiovascular disease and metabolic and respiratory disorders being the most significant (P<.001), grouped according to the International Classification of Diseases 10 codes. CONCLUSIONS: This study will provide a comprehensive opportunity to study the mechanisms of COVID-19 severity in recontactable participants. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50733.

11.
Heliyon ; 10(2): e24184, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304848

RESUMO

Background: With the spread of SARS-CoV-2 impacting upon public health directly and socioeconomically, further information was required to inform policy decisions designed to limit virus spread during the pandemic. This study sought to contribute to serosurveillance work within Northern Ireland to track SARS-CoV-2 progression and guide health strategy. Methods: Sera/plasma samples from clinical biochemistry laboratories were analysed for anti-SARS-CoV-2 antibodies. Samples were assessed using an Elecsys anti-SARS-CoV-2 or anti-SARS-CoV-2 S ECLIA (Roche) on an automated cobas e 801 analyser. Samples were also assessed via an anti-SARS-CoV-2 ELISA (Euroimmun). A subset of samples assessed via the Elecsys anti-SARS-CoV-2 ECLIA were subsequently analysed in an ACE2 pseudoneutralisation assay using a V-PLEX SARS-CoV-2 Panel 7 for IgG and ACE2 (Meso Scale Diagnostics). Results: Across three testing rounds (June-July 2020, November-December 2020 and June-July 2021 (rounds 1-3 respectively)), 4844 residual sera/plasma specimens were assayed for anti-SARS-CoV-2 antibodies. Seropositivity rates increased across the study, peaking at 11.6 % (95 % CI 10.4 %-13.0 %) during round 3. Varying trends in SARS-CoV-2 seropositivity were noted based on demographic factors. For instance, highest rates of seropositivity shifted from older to younger demographics across the study period. In round 3, Alpha (B.1.1.7) variant neutralising antibodies were most frequently detected across age groups, with median concentration of anti-spike protein antibodies elevated in 50-69 year olds and anti-S1 RBD antibodies elevated in 70+ year olds, relative to other age groups. Conclusions: With seropositivity rates of <15 % across the assessment period, it can be concluded that the significant proportion of the Northern Ireland population had not yet naturally contracted the virus by mid-2021.

12.
Biochim Biophys Acta ; 1819(3-4): 322-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21839870

RESUMO

Cellular senescence is an irreversible proliferation arrest, thought to contribute to tumor suppression, proper wound healing and, perhaps, tissue and organismal aging. Two classical tumor suppressors, p53 and pRB, control cell cycle arrest associated with senescence. Profound molecular changes occur in cells undergoing senescence. At the level of chromatin, for example, senescence associated heterochromatic foci (SAHF) form in some cell types. Chromatin is inherently dynamic and likely needs to be actively maintained to achieve a stable cell phenotype. In proliferating cells chromatin is maintained in conjunction with DNA replication, but how non-proliferating cells maintain chromatin structure is poorly understood. Some histone variants, such as H3.3 and macroH2A increase as cells undergo senescence, suggesting histone variants and their associated chaperones could be important in chromatin structure maintenance in senescent cells. Here, we discuss options available for senescent cells to maintain chromatin structure and the relative contribution of histone variants and chaperones in this process. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

13.
PLOS Glob Public Health ; 3(4): e0001795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097994

RESUMO

We sought to determine the most efficacious and cost-effective strategy to follow when developing a national screening programme by comparing and contrasting the national screening programmes of Norway, the Netherlands and the UK. Comparing the detection rates and screening profiles between the Netherlands, Norway, the UK and constituent nations (England, Northern Ireland, Scotland and Wales) it is clear that maximising the number of relatives screened per index case leads to identification of the greatest proportion of an FH population. The UK has stated targets to detect 25% of the population of England with FH across the 5 years to 2024 with the NHS Long Term Plan. However, this is grossly unrealistic and, based on pre-pandemic rates, will only be reached in the year 2096. We also modelled the efficacy and cost-effectiveness of two screening strategies: 1) Universal screening of 1-2-year-olds, 2) electronic healthcare record screening, in both cases coupled to reverse cascade screening. We found that index case detection from electronic healthcare records was 56% more efficacious than universal screening and, depending on the cascade screening rate of success, 36%-43% more cost-effective per FH case detected. The UK is currently trialling universal screening of 1-2-year-olds to contribute to national FH detection targets. Our modelling suggests that this is not the most efficacious or cost-effective strategy to follow. For countries looking to develop national FH programmes, screening of electronic healthcare records, coupled to successful cascade screening to blood relatives is likely to be a preferable strategy to follow.

14.
Biochemistry ; 51(12): 2366-77, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22401310

RESUMO

The mammalian HIRA/UBN1/CABIN1/ASF1a (HUCA) histone chaperone complex deposits the histone H3 variant H3.3 into chromatin and is linked to gene activation, repression, and chromatin assembly in diverse cell contexts. We recently reported that a short N-terminal fragment of UBN1 containing amino acids 1-175 is necessary and sufficient for interaction with the WD repeats of HIRA and attributed this interaction to a region from residues 120-175 that is highly conserved with the yeast ortholog Hpc2 and so termed the HRD for Hpc2-related domain. In this report, through a more comprehensive and refined biochemical and mutational analysis, we identify a smaller and more moderately conserved region within residues 41-77 of UBN1, which we term the NHRD, that is essential for interaction with the HIRA WD repeats; we further demonstrate that the HRD is dispensable for this interaction. We employ analytical ultracentrifugation studies to demonstrate that the NHRD of UBN1 and the WD repeats of HIRA form a tight 1:1 complex with a dissociation constant in the nanomolar range. Mutagenesis experiments identify several key residues in the NHRD that are required for interaction with the HIRA WD repeat domain, stability of the HUCA complex in vitro and in vivo, and changes in chromatin organization in primary human cells. Together, these studies implicate the NHRD domain of UBN1 as being an essential region for HIRA interaction and chromatin organization by the HUCA complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Cromatina/metabolismo , Chaperonas de Histonas/química , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mutação Puntual , Estabilidade Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Solubilidade , Fatores de Transcrição/química , Fatores de Transcrição/genética
15.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943875

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or "sendotypes"), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan.


Assuntos
Envelhecimento/patologia , COVID-19/patologia , SARS-CoV-2/fisiologia , Animais , Biomarcadores/metabolismo , Senescência Celular , Humanos , Pesquisa Translacional Biomédica
16.
Ageing Res Rev ; 69: 101363, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023420

RESUMO

Cellular senescence is a state of growth arrest that occurs after cells encounter various stresses. Senescence contributes to tumour suppression, embryonic development, and wound healing. It impacts on the pathology of various diseases by secreting inflammatory chemokines, immune modulators and other bioactive factors. These secretory biosignatures ultimately cause inflammation, tissue fibrosis, immunosenescence and many ageing-related diseases such as atrial fibrillation (AF). Because the molecular mechanisms underpinning AF development remain unclear, current treatments are suboptimal and have serious side effects. In this review, we summarize recent results describing the role of senescence in AF. We propose that senescence factors induce AF and have a causative role. Hence, targeting senescence and its secretory phenotype may attenuate AF.


Assuntos
Fibrilação Atrial , Imunossenescência , Fibrilação Atrial/tratamento farmacológico , Senescência Celular , Desenvolvimento de Medicamentos , Fibrose , Humanos
17.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440777

RESUMO

Vitamin D and cholesterol metabolism overlap significantly in the pathways that contribute to their biosynthesis. However, our understanding of their independent and co-regulation is limited. Cardiovascular disease is the leading cause of death globally and atherosclerosis, the pathology associated with elevated cholesterol, is the leading cause of cardiovascular disease. It is therefore important to understand vitamin D metabolism as a contributory factor. From the literature, we compile evidence of how these systems interact, relating the understanding of the molecular mechanisms involved to the results from observational studies. We also present the first systems biology pathway map of the joint cholesterol and vitamin D metabolisms made available using the Systems Biology Graphical Notation (SBGN) Markup Language (SBGNML). It is shown that the relationship between vitamin D supplementation, total cholesterol, and LDL-C status, and between latitude, vitamin D, and cholesterol status are consistent with our knowledge of molecular mechanisms. We also highlight the results that cannot be explained with our current knowledge of molecular mechanisms: (i) vitamin D supplementation mitigates the side-effects of statin therapy; (ii) statin therapy does not impact upon vitamin D status; and critically (iii) vitamin D supplementation does not improve cardiovascular outcomes, despite improving cardiovascular risk factors. For (iii), we present a hypothesis, based on observations in the literature, that describes how vitamin D regulates the balance between cellular and plasma cholesterol. Answering these questions will create significant opportunities for advancement in our understanding of cardiovascular health.


Assuntos
Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , LDL-Colesterol/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Modelos Biológicos , Prognóstico , Medição de Risco , Biologia de Sistemas , Vitamina D/uso terapêutico , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia
18.
J Clin Immunol ; 30(4): 520-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20373002

RESUMO

BACKGROUND AND AIMS: While the molecular basis of dilated cardiomyopathy (DCM) remains uncertain, concrete evidence is emerging that sarcomeric and cytoskeleton gene expression of myocardium isolated from failing versus non-failing patients differ dramatically. The central aim to this work was to find out the possible role of dystrophin and titin along with the TNF-alpha in the pathogenesis of cardiomyopathy. PATIENTS AND METHODS: mRNA levels and protein expression of a cytoskeletal protein, dystrophin and a sarcomeric protein, titin in endomyocardial biopsies of DCM patients were examined using RT-PCR and immunohistochemistry, respectively. Further, we examined the effect of TNF-alpha on myocardial expression of titin and dystrophin in vitro in rat cardiac myoblast cell line (H9c2). RESULTS: We observed significantly decreased mRNA and protein levels of dystrophin and titin in endomyocardial biopsy of DCM patients as compared to control group. The decreased levels of these proteins correlated with the severity of the disease. Plasma levels of both TNF-alpha and its soluble receptors TNFR1 and TNFR2 were found to be significantly higher in patients as compared to control group. Treatment of H9c2 cells with TNF-alpha resulted in a dose- and time-dependent decrease in mRNA levels of dystrophin and titin. Pretreatment of these cells with MG132, an inhibitor of nuclear factor kappa B (NF-kappaB) pathway, abolished TNF-alpha-induced reduction in mRNA levels of dystrophin and titin. CONCLUSION: Our results suggest that reduced expression of dystrophin and titin is associated with the pathophysiology of DCM, and TNF-alpha may modulate the expression of these proteins via NF-kappaB pathway.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Distrofina/análise , Proteínas Musculares/análise , Proteínas Quinases/análise , Fator de Necrose Tumoral alfa/farmacologia , Animais , Cardiomiopatia Dilatada/genética , Estudos de Casos e Controles , Linhagem Celular , Conectina , Relação Dose-Resposta a Droga , Distrofina/genética , Humanos , Proteínas Musculares/genética , Miocárdio/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases/genética , RNA Mensageiro/análise , Ratos
19.
Mol Cell Biochem ; 321(1-2): 189-96, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18953637

RESUMO

The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130 consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14 mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in the sudden cardiac death (SCD) of the proband at the age of 21 years. Further, a DCM causing novel mutation p.Gly377Ser was identified which resulted in the milder phenotype. The present study shows that there is genetic and phenotypic heterogeneity of cardiomyopathies in Indian population. Further, the location and type of mutation in a given sarcomeric gene determines the severity and phenotypic plasticity in cardiomyopathies.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cadeias Pesadas de Miosina , Miosinas Ventriculares , Adulto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Análise Mutacional de DNA , Ecocardiografia , Feminino , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Linhagem , Fenótipo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Adulto Jovem
20.
Mol Cell Biochem ; 324(1-2): 139-45, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19107325

RESUMO

BACKGROUND: Increased levels of TNF-alpha, IL-6, their soluble receptors, and NT-proBNP have been observed in patients with dilated cardiomyopathy (DCM). In the present study, we assessed the possible involvement of proinflammatory cytokines and their soluble receptors with and without recovery of LV function in DCM patients. METHODS AND RESULTS: Forty patients with DCM were enrolled and divided into two groups: Group I consisted of DCM patients (n = 30) whose left ventricular ejection fraction (LVEF) had not recovered on follow up and Group II comprised DCM patients (n = 10) whose LVEF had recovered. Ten healthy subjects were included as controls (Group III). TNF-alpha, IL-6,TNFR1, TNFRII, gp130, and NT-proBNP levels were significantly increased in Group I and were significantly lower in patients with LVEF recovery as compared to those without recovery of LVEF (P < 0.05). CONCLUSION: Circulating TNF-alpha, IL-6, and NT-proBNP appear to correlate with the LV function recovery of patients with DCM and could be used as prognostic biomarkers.


Assuntos
Cardiomiopatia Dilatada/diagnóstico , Citocinas/sangue , Inflamação/imunologia , Função Ventricular Esquerda , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Receptor gp130 de Citocina/sangue , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA