Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 649: 949-959, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179823

RESUMO

We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.e., what we care about). We consider a hypothetical case study of two species of trout, brown trout (Salmo trutta; BT) and greenback cutthroat trout (Oncorhynchus clarkii stomias; GCT). These hypothetical populations live in a high-altitude river system and are exposed to human-derived estrogen (17α­ethinyl estradiol, EE2), which is the bioactive estrogen in many contraceptives. We use the individual-based model inSTREAM to explore how seasonally varying concentrations of EE2 could influence male spawning and sperm quality. Resulting impacts on trout recruitment and the consequences of such for anglers and for the continued viability of populations of GCT (the state fish of Colorado) are explored. inSTREAM incorporates seasonally varying river flow and temperature, fishing pressure, the influence of EE2 on species-specific demography, and inter-specific competition. The model facilitates quantitative exploration of the relative importance of endocrine disruption and inter-species competition on trout population dynamics. Simulations predicted constant EE2 loading to have more impacts on GCT than BT. However, increasing removal of BT by anglers can enhance the persistence of GCT and offset some of the negative effects of EE2. We demonstrate how models that quantitatively link impacts of chemicals and other stressors on individual survival, growth, and reproduction to consequences for populations and ecosystem service delivery, can be coupled with ecosystem service valuation. The approach facilitates interpretation of toxicity data in an ecological context and gives beneficiaries of ecosystem services a more explicit role in management decisions. Although challenges remain, this type of approach may be particularly helpful for site-specific risk assessments and those in which tradeoffs and synergies among ecosystem services need to be considered.


Assuntos
Disruptores Endócrinos/efeitos adversos , Exposição Ambiental , Etinilestradiol/efeitos adversos , Truta/metabolismo , Poluentes Químicos da Água/efeitos adversos , Animais , Masculino , Modelos Biológicos , Oncorhynchus/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Espermatozoides/efeitos dos fármacos
2.
Environ Toxicol Chem ; 36(4): 845-859, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28370293

RESUMO

Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Gestão de Riscos , Animais , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Água Doce/análise , Água Doce/química , Praguicidas/toxicidade , Medição de Risco/métodos , Gestão de Riscos/métodos , Gestão de Riscos/organização & administração , Qualidade da Água
3.
PLoS One ; 10(8): e0135334, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295478

RESUMO

Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Modelos Estatísticos , Reprodução/fisiologia , Truta/fisiologia , Animais , Simulação por Computador , Ecossistema , Feminino , Humanos , Masculino , Dinâmica Populacional , Rios , Estações do Ano , Temperatura
4.
Environ Manage ; 42(6): 933-45, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18810527

RESUMO

Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to "restore" pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Sedimentos Geológicos/análise , Rios , Salmão/fisiologia , Animais , Animais Selvagens , California , Meio Ambiente , Humanos , Modelos Biológicos , Comportamento Predatório , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA