Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 69: 311-20, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612718

RESUMO

To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75µm; depth: 1-10µm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25µm and deeper than 5µm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5µm. There, the cells are sensitive to the microscale structures and go on spreading following these structures.


Assuntos
Materiais Biocompatíveis/química , Lasers , Titânio/química , Ligas , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA