Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675021

RESUMO

Electrospun systems are becoming promising devices usable for topical treatments. They are eligible to deliver different therapies, from anti-inflammatory to antitumoral. In the current research, polycaprolactone electrospun membranes loaded with synthetic and commercial antitumoral active substances were produced, underlining how the matrix-filler affinity is a crucial parameter for designing drug delivery devices. Nanofibrous membranes loaded with different percentages of Dacarbazine (the drug of choice for melanoma) and a synthetic derivative of Dacarbazine were produced and compared to membranes loaded with AuM1, a highly active Au-complex with low affinity to the matrix. AFM morphologies showed that the surface profile of nanofibers loaded with affine substances is similar to one of the unloaded systems, thanks to the nature of the matrix-filler interaction. FTIR analyses proved the efficacy of the interaction between the amidic group of the Dacarbazine and the polycaprolactone. In AuM1-loaded membranes, because of the weak matrix-filler interaction, the complex is mainly aggregated in nanometric domains on the nanofiber surface, which manifests a nanometric roughness. Consequently, the release profiles follow a Fickian behavior for the Dacarbazine-based systems, whereas a two-step with a highly prominent burst effect was observed for AuM1 systems. The performed antitumoral tests evidence the high-cytotoxic activity of the electrospun systems against melanoma cell lines, proving that the synthetic substances are more active than the commercial dacarbazine.


Assuntos
Melanoma , Nanofibras , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios , Excipientes , Dacarbazina/farmacologia , Melanoma/tratamento farmacológico , Liberação Controlada de Fármacos
2.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806152

RESUMO

Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium.


Assuntos
Melanoma , Nanofibras , Apoptose , Ouro/farmacologia , Humanos , Membranas , Nanofibras/química , Poliésteres/química
3.
Nanotechnology ; 31(22): 225708, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32059201

RESUMO

This study proposes new kinds of functionalization procedures able to preserve specific properties of carbon nanotubes (CNTs) and to improve compatibility with the epoxy matrix. Through a covalent approach, for the first time, CNTs are functionalized with the same hardener agent, 4,4'-diaminodiphenyl sulfone, employed to solidify the epoxy matrix and capable to fulfill mechanical requirements of industrial structural resins. The same CNTs are non-covalently modified through the polymer wrapping mechanism with benzoxazine (Bz) terminated polydimethylsiloxane (PDMS). The comparison between electrical and mechanical properties of the nanocomposites highlights the success of the non-covalent functionalization in determining an increase in the glass transition temperature (Tg) and in better preserving the unfunctionalized CNT electrical conductivity. Besides, tunneling atomic force microscopy (TUNA), powerful to catch ultra-low currents, has been used for revealing the morphology on nanoscale domains and detecting the conductivity on the same location of CNT/epoxy resins. No electrical contacts to the grounds have been used for the TUNA analysis; a procedure that does not alter the results on the interface domains which experience contact areas with strong differences in their properties. The effectiveness of performed CNT functionalizations as a route to impart self-healing efficiency to the resin formulations has also been proved.

4.
Nanotechnology ; 28(9): 094001, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135206

RESUMO

The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

5.
Polymers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891456

RESUMO

This work concerns the verification of the self-healing ability of PP-co-HUPy copolymers dispersed in epoxy systems. PP is the acronym for the Poly-PEGMA polymer, and HUPy refers to the HEMA-UPy copolymers based on ureidopyrimidinone (UPy) moieties. In particular, this work aims to verify whether this elastomer characterized by an intrinsic self-healing ability can activate supramolecular interactions among polymer chains of an epoxy resin, as in the elastomer alone. The elastomer includes a class of polyethylene glycol monomethyl ether methacrylate-based copolymers, with different percentages of urea-N-2-amino-4-hydroxy-6-methyl pyrimidine-N'-(hexamethylene-n-carboxyethyl methacrylate) (HEMA-UPy) co-monomers. The self-healing capability of these copolymers based on possible quadruple hydrogen bond interactions between polymer chains has been verified. The formulated epoxy samples did not show self-healing efficiency. This can be attributed to the formation of phase segregation that originates during the curing process of the samples, although the PP-co-HUPy copolymers are completely soluble in the liquid epoxy matrix EP. The morphological investigation highlighted the presence of crystals of PP-co-HUPy copolymers, which are in greater quantity in the sample containing the highest weight percentage (7.8 wt%) of HUPy units. Furthermore, the crystals act as promotors for increasing the curing degree (DC) of the epoxy systems containing HUPy units. DC goes from 91.6% for EP to 96.1% and 95.4% for the samples containing weight percentages of 2.5 and 7.8 wt% of HUPy units, respectively. Dynamic mechanical analysis (DMA) shows storage modulus values for epoxy systems containing PP-co-HUPy units lower than that of the unfilled resin EP. The values of maximum in Tan δ (Tg), representing the temperature at which the glass transition occurs, are 220 for the unfilled resin EP, 228 for the sample containing 2.5 wt% of HEMA-UPy units, and 211 for the sample containing 7.8 wt% of HEMA-UPy units.

6.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000703

RESUMO

In recent years, self-healing polymers have emerged as a topic of considerable interest owing to their capability to partially restore material properties and thereby extend the product's lifespan. The main purpose of this study is to investigate the nanoindentation response in terms of hardness, reduced modulus, contact depth, and coefficient of friction of a self-healing resin developed for use in aeronautical and aerospace contexts. To achieve this, the bifunctional epoxy precursor underwent tailored functionalization to improve its toughness, facilitating effective compatibilization with a rubber phase dispersed within the host epoxy resin. This approach aimed to highlight the significant impact of the quantity and distribution of rubber domains within the resin on enhancing its mechanical properties. The main results are that pure resin (EP sample) exhibits a higher hardness (about 36.7% more) and reduced modulus (about 7% more), consequently leading to a lower contact depth and coefficient of friction (11.4% less) compared to other formulations that, conversely, are well-suited for preserving damage from mechanical stresses due to their capabilities in absorbing mechanical energy. Furthermore, finite element method (FEM) simulations of the nanoindentation process were conducted. The numerical results were meticulously compared with experimental data, demonstrating good agreement. The simulation study confirms that the EP sample with higher hardness and reduced modulus shows less penetration depth under the same applied load with respect to the other analyzed samples. Values of 877 nm (close to the experimental result of 876.1 nm) and 1010 nm (close to the experimental result of 1008.8 nm) were calculated for EP and the toughened self-healing sample (EP-R-160-T), respectively. The numerical results of the hardness provide a value of 0.42 GPa and 0.32 GPa for EP and EP-R-160-T, respectively, which match the experimental data of 0.41 GPa and 0.30 GPa. This validation of the FEM model underscores its efficacy in predicting the mechanical behavior of nanocomposite materials under nanoindentation. The proposed investigation aims to contribute knowledge and optimization tips about self-healing resins.

7.
Nanotechnology ; 24(30): 305704, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23843601

RESUMO

Heat treatment of carbon nanofibers has proven to be an effective method in removing defects from carbon nanofibers, causing a strong increase in their structural perfection and thermal stability. It affects the bonding states of carbon atoms in the nanofiber structure and causes a significant transformation in the hybridization state of the bonded carbon atoms.Nanofilled resins made of heat-treated CNF show significant increases in their electrical conductivity even at low concentrations. This confirms that enhancement in the perfection of the fiber structure with consequent change in the morphological features plays a prominent role in affecting the electrical properties. Indeed heat-treated CNFs display a stiff structure and a smooth surface which tends to lower the thickness of the unavoidable insulating epoxy layer formed around the CNF which, in turn, plays a fundamental role in the electrical transport properties along the conducting clusters. This might be very beneficial in terms of electrical conductivity but might have negligible effect on the mechanical properties.

8.
Nanomaterials (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686935

RESUMO

This study focuses on epoxy hybrid systems prepared by incorporating multi-wall carbon nanotubes (MWCNTs) and graphene nanosheets (GNs) at two fixed filler amounts: below (0.1 wt%) and above (0.5 wt%), with varying MWCNT:GN mix ratios. The hybrid epoxy systems exhibited remarkable electrical performance, attributed to the π-π bond interactions between the multi-wall carbon nanotubes and the graphene layers dispersed in the epoxy resin matrix. The material's properties were characterized through dynamic mechanical and thermal analyses over a wide range of temperatures. In addition to excellent electrical properties, the formulated hybrid systems demonstrated high mechanical performance and thermal stability. Notably, the glass transition temperature of the samples reached 255 °C, and high storage modulus values at elevated temperatures were observed. The hybrid systems also displayed thermal stability up to 360 °C in air. By comparing the mechanical and electrical performance, the formulation can be optimized in terms of the electrical percolation threshold (EPT), electrical conductivity, thermostability, and mechanical parameters. This research provides valuable insights for designing advanced epoxy-based materials with multifunctional properties.

9.
Polymers (Basel) ; 15(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242872

RESUMO

In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs.

10.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987155

RESUMO

This paper undertakes the thermal and electrical characterization of three commercial unsaturated polyester imide resins (UPIR) to identify which among them could better perform the insulation function of electric motors (high-power induction motors fed by pulse-wide modulation (PWM) inverters). The process foreseen for the motor insulation using these resins is Vacuum Pressure Impregnation (VPI). The resin formulations were specially selected because they are one-component systems; hence, before the VPI process, they do not require mixing steps with external hardeners to activate the curing process. Furthermore, they are characterized by low viscosity and a thermal class higher than 180 °C and are Volatile Organic Compound (VOC)-free. Thermal investigations using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques prove their excellent thermal resistance up to 320 °C. Moreover, impedance spectroscopy in the frequency range of 100 Hz-1 MHz was analyzed to compare the electromagnetic performance of the considered formulations. They manifest an electrical conductivity starting from 10-10 S/m, a relative permittivity around 3, and a loss tangent value lower than 0.02, which appears almost stable in the analyzed frequency range. These values confirm their usefulness as impregnating resins in secondary insulation material applications.

11.
ACS Omega ; 8(26): 23596-23606, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426222

RESUMO

The development of hydrophobic composite coatings is of great interest for several applications in the aerospace industry. Functionalized microparticles can be obtained from waste fabrics and employed as fillers to prepare sustainable hydrophobic epoxy-based coatings. Following a waste-to-wealth approach, a novel hydrophobic epoxy-based composite including hemp microparticles (HMPs) functionalized with waterglass solution, 3-aminopropyl triethoxysilane, polypropylene-graft-maleic anhydride, and either hexadecyltrimethoxysilane or 1H,1H,2H,2H-perfluorooctyltriethoxysilane is presented. The resulting epoxy coatings based on hydrophobic HMPs were cast on aeronautical carbon fiber-reinforced panels to improve their anti-icing performance. Wettability and anti-icing behavior of the prepared composites were investigated at 25 °C and -30 °C (complete icing time), respectively. Samples cast with the composite coating can achieve up to 30 °C higher water contact angle and doubled icing time than aeronautical panels treated with unfilled epoxy resin. A low content (2 wt %) of tailored HMPs causes an increase of ∼26% in the glass transition temperature of the coatings compared to pristine resin, confirming the good interaction between the hemp filler and epoxy matrix at the interphase. Finally, atomic force microscopy reveals that the HMPs can induce the formation of a hierarchical structure on the surface of casted panels. This rough morphology, combined with the silane activity, allows the preparation of aeronautical substrates with enhanced hydrophobicity, anti-icing capability, and thermal stability.

12.
Polymers (Basel) ; 15(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765641

RESUMO

This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of the state-of-the-art knowledge and research on the thermal stability of various polymers and composites, such as polyimides, epoxy composites, and carbon-filled composites; (2) identify the key factors, mechanisms, methods, and challenges that affect the thermal stability of polymers and composites, such as the temperature, radiation, oxygen, and degradation; (3) highlight the current and potential applications, benefits, limitations, and opportunities of polymers and composites with high thermal stability, such as thermal control, structural reinforcement, protection, and energy conversion; (4) give a glimpse of future research directions by providing indications for improving the thermal stability of polymers and composites, such as novel materials, hybrid composites, smart materials, and advanced processing methods. In this context, thermal analysis plays a crucial role in the development of polyimide-based materials for the radiation shielding of space solar cells or spacecraft components. The main strategies that have been explored to improve the processability, optical transparency, and radiation resistance of polyimide-based materials without compromising their thermal stability are highlighted. The combination of different types of polyimides, such as linear and hyperbranched, as well as the incorporation of bulky pendant groups, are reported as routes for improving the mechanical behavior and optical transparency while retaining the thermal stability and radiation shielding properties. Furthermore, the thermal stability of polymer/carbon nanocomposites is discussed with particular reference to the role of the filler in radiation monitoring systems and electromagnetic interference shielding in the space environment. Finally, the thermal stability of epoxy-based composites and how it is influenced by the type and content of epoxy resin, curing agent, degree of cross-linking, and the addition of fillers or modifiers are critically reviewed. Some studies have reported that incorporating mesoporous silica micro-filler or microencapsulated phase change materials (MPCM) into epoxy resin can enhance its thermal stability and mechanical properties. The mesoporous silica composite exhibited the highest glass transition temperature and activation energy for thermal degradation among all the epoxy-silica nano/micro-composites. Indeed, an average activation energy value of 148.86 kJ/mol was recorded for the thermal degradation of unfilled epoxy resin. The maximum activation energy range was instead recorded for composites loaded with mesoporous microsilica. The EMC-5p50 sample showed the highest mean value of 217.6 kJ/mol. This remarkable enhancement was ascribed to the polymer invading the silica pores and forging formidable interfacial bonds.

13.
Nanomaterials (Basel) ; 13(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049345

RESUMO

This work analyzes on nanoscale spatial domains the mechanical features of electrospun membranes of Polycaprolactone (PCL) loaded with Functionalized Magnetite Nanoparticles (FMNs) produced via an electrospinning process. Thermal and structural analyses demonstrate that FMNs affect the PCL crystallinity and its melting temperature. HarmoniX-Atomic Force Microscopy (H-AFM), a modality suitable to map the elastic modulus on nanometric domains of the sample surface, evidences that the FMNs affect the local mechanical properties of the membranes. The mechanical modulus increases when the tip reveals the magnetite nanoparticles. That allows accurate mapping of the FMNs distribution along the nanofibers mat through the analysis of a mechanical parameter. Local mechanical modulus values are also affected by the crystallinity degree of PCL influenced by the filler content. The crystallinity increases for a low filler percentage (<5 wt.%), while, higher magnetite amounts tend to hinder the crystallization of the polymer, which manifests a lower crystallinity. H-AFM analysis confirms this trend, showing that the distribution of local mechanical values is a function of the filler amount and crystallinity of the fibers hosting the filler. The bulk mechanical properties of the membranes, evaluated through tensile tests, are strictly related to the nanometric features of the complex nanocomposite system.

14.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500943

RESUMO

This paper proposes the design of toughened self-healing supramolecular resins able to fulfill functional and structural requirements for industrial applications. These new nanocomposites are based on compounds acting as promotors of reversible self-healing interactions. Electrically conductive carbon nanotubes, selected among those allowing to reach the electrical percolation threshold (EPT) with a very low amount of nanofiller, were dispersed in the self-healing polymeric matrix to contrast the electrical insulating properties of epoxy matrices, as required for many applications. The formulated supramolecular systems are thermally stable, up to 360 °C. Depending on the chemical formulation, the self-healing efficiency η, assessed by the fracture test, can reach almost the complete self-repairing efficiency (η = 99%). Studies on the complex viscosity of smart nanocomposites highlight that the effect of the nanofiller dominates over those due to the healing agents. The presence of healing compounds anchored to the hosting epoxy matrix determines a relevant increase in the glass transition temperature (Tg), which results in values higher than 200 °C. Compared to the unfilled matrix, a rise from 189 °C to 223 °C is found for two of the proposed formulations.

15.
Polymers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926010

RESUMO

A big step forward for composite application in the sector of structural materials is given by the use of Multi-Wall Carbon Nanotubes (MWCNTs) functionalized with hydrogen bonding moieties, such as barbiturate and thymine, to activate self-healing mechanisms and integrate additional functionalities. These materials with multiple healing properties at the same damaged site, imparted by hydrogen bonds, will also have the potential to improve material reliability, extend the service life, reduce replacement costs, and improve product safety. This revolutionary approach is obtained by integrating the non-covalent interactions coupled with the conventional covalent approach used to cross-link the polymer. The objective of this work is to characterize rubber-toughened supramolecular self-healing epoxy formulations based on unfunctionalized and functionalized MWCNTs using Tunneling Atomic Force Microscopy (TUNA). This advanced technique clearly shows the effect produced by the hydrogen bonding moieties acting as reversible healing elements by their simultaneous donor and acceptor character, and covalently linked to MWCNTs to originate self-healing nanocomposites. In particular, TUNA proved to be very effective for the morphology study of both the unfunctionalized and functionalized carbon nanotube-based conductive networks, thus providing useful insights aimed at understanding the influence of the intrinsic nature of the nanocharge on the final properties of the multifunctional composites.

16.
J Nanosci Nanotechnol ; 10(4): 2686-93, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355485

RESUMO

Different experimental procedures were investigated for incorporating Multi walled Carbon nanotubes (MWCNT) into epoxy diglycidil-ether bisphenol-A (DGEBA), cured with 4,4' diamine-dibenzyl-sulfone (DDS): (i) mechanical mixing for either 60 or 120 minutes; (ii) high energy ball milling for 30 minutes; (iii) ultrasonication for 20 minutes. The mechanical properties of the obtained samples were monitored and used in order to guide the selection of the most promising composite system. The best results were obtained by using, as method of incorporation of carbon nanotubes in the resin, sonication for 20 minutes. Moreover it was found that the presence of an accelerating agent, BF3, commonly used for the cure reaction, is ineffective in the presence of carbon nanotubes, besides leading to composites with a lower glass transition. Afterwards resins with increasing MWCNT concentration were prepared and the thermal properties analyzed, showing a slight improvement in either the glass transition or the degradation temperature. The electrical conductivity of the selected composite system is characterised by a percolation threshold (lower than 0.1%) comparable to that found for similar systems, but beyond threshold it assumes greater values. The conductivity is characterised by only a slight increase with temperature in the range 30-90 degrees C. The positive temperature coefficient can be related to a decrease of the small gaps separating the CNTs clusters. A simple power law describes the relation between the composite conductivity and CNT concentration near the percolation threshold. A dependence of all the parameters of the power law on the temperature has also been evidenced, and it should be properly considered and indicated when using such a model in describing the behaviour of composites near the percolation threshold.

17.
Nanomaterials (Basel) ; 10(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635410

RESUMO

In this paper, a non-covalent π-π interaction between graphene nanoparticles (G) and a pyrene-based molecule (py) has been successfully accomplished to give the functionalized nanofillers (G-py). The proposed modification has proven to be a winning solution aimed at safeguarding the graphene's notable electronic properties, while promoting a more effective nanofiller dispersion attributable to a decrease in viscosity with consequent improvement of the rheological properties of the formulated nanocomposites filled with G-py. The electrical current maps of the G-py based epoxy composites, loaded with filler weight percentages both above and below the electric percolation threshold (EPT), were obtained by tunneling atomic force microscopy (TUNA) technique. The possibility to detect low currents also for the sample at lower concentration (0.1 wt%) confirms the good electrical performance of the nanocomposites and, consequently, the successful performed functionalization. The non-covalent modification significantly improves the thermal stability of the unfunctionalized G of about 70 °C, thus causing an increase in the composite oxidative thermostability since the evolution of CO2 shifts to higher values. Moreover, non-covalent functionalization proved to be impactful in imparting an overall enhancement of the nanocomposite mechanical properties due to good bonding between graphene and epoxy matrix, also showing a greater roughness which is decisive in influencing the interface adhesion efficiency.

18.
Polymers (Basel) ; 11(5)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072028

RESUMO

The capability of Atomic Force Microscopy (AFM) to characterize composite material interfaces can help in the design of new carbon-based nanocomposites by providing useful information on the structure-property relationship. In this paper, the potentiality of AFM is explored to investigate the dispersion and the morphological features of aeronautical epoxy resins loaded with several carbon nanostructured fillers. Fourier Transform Infrared Spectroscopy (FTIR) and thermal investigations of the formulated samples have also been performed. The FTIR results show that, among the examined nanoparticles, exfoliated graphite (EG) with a predominantly two-dimensional (2D) shape favors the hardening process of the epoxy matrix, increasing its reaction rate. As evidenced by the FTIR signal related to the epoxy stretching frequency (907 cm-1), the accelerating effect of the EG sample increases as the filler concentration increases. This effect, already observable for curing treatment of 60 min conducted at the low temperature of 125 °C, suggests a very fast opening of epoxy groups at the beginning of the cross-linking process. For all the analyzed samples, the percentage of the curing degree (DC) goes beyond 90%, reaching up to 100% for the EG-based nanocomposites. Besides, the addition of the exfoliated graphite enhances the thermostability of the samples up to about 370 °C, even in the case of very low EG percentages (0.05% by weight).

19.
Materials (Basel) ; 12(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909458

RESUMO

Epoxy based coatings are susceptible to ultra violet (UV) damage and their durability can be significantly reduced in outdoor environments. This paper highlights a relevant property of graphene-based nanoparticles: Graphene Nanoplatelets (GNPs) incorporated in an epoxy-based free-standing film determine a strong decrease of the mechanical damages caused by UV irradiation. The effects of UV light on the morphology and mechanical properties of the solidified nanocharged epoxy films are investigated by Atomic Force Microscopy (AFM), in the acquisition mode "HarmoniX." Nanometric-resolved maps of the mechanical properties of the multi-phase material evidence that the incorporation of low percentages, between 0.1% and 1.0% by weight, of graphene nanoplatelets (GNPs) in the polymeric film causes a relevant enhancement in the mechanical stability of the irradiated films. The beneficial effect progressively increases with increasing GNP percentage. The paper also highlights the potentiality of AFM microscopy, in the acquisition mode "HarmoniX" for studying multiphase polymeric systems.

20.
Polymers (Basel) ; 11(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108923

RESUMO

Reversible Hydrogen Bonds (RHB) have been explored to confer self-healing function to multifunctional nanocomposites. This study has been carried out through a sequence of different steps. Hydrogen bonding moieties, with the intrinsic ability to simultaneously perform the functions of both hydrogen donors and acceptors, have been covalently attached to the walls of carbon nanotubes. The epoxy matrix has been modified to adapt the formulation for hosting self-healing mechanisms. It has been toughened with different percentages of rubber phase covalently linked to the epoxy precursor. The most performant matrix, from the mechanical point of view, has been chosen for the incorporation of MWCNTs. Self-healing performance and electrical conductivities have been studied. The comparison of data related to the properties of nanocomposites containing incorporated functionalized and nonfunctionalized MWCNTs has been performed. The values of the electrical conductivity of the self-healing nanocomposites, containing 2.0% by weight of functionalized multiwalled carbon nanotubes (MWCNTs), range between 6.76 × 10-3 S/m and 3.77 × 10-2 S/m, depending on the nature of the functional group. Curing degrees, glass transition temperatures, and storage moduli of the formulated multifunctional nanocomposites prove their potential for application as functional structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA