Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 78: 929-58, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19344236

RESUMO

Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen-the prototypical collagen fibril-has been revealed in detail. Artificial collagen fibrils that display some properties of natural collagen fibrils are now accessible using chemical synthesis and self-assembly. A rapidly emerging understanding of the mechanical and structural properties of native collagen fibrils will guide further development of artificial collagenous materials for biomedicine and nanotechnology.


Assuntos
Colágeno/química , Animais , Humanos , Modelos Moleculares , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
2.
Crit Rev Biochem Mol Biol ; 57(3): 244-260, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34886717

RESUMO

Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.


Assuntos
Ribonuclease Pancreático , Ribonucleases , Endorribonucleases , RNA , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
3.
Bioconjug Chem ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879814

RESUMO

Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.

4.
J Org Chem ; 89(4): 2232-2237, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275285

RESUMO

"Click organocatalysis" uses mutually orthogonal click reactions to organocatalyze a click reaction. We report the development of an isobenzofuran organocatalyst that increases the rate and regioselectivity of an azide-alkyne cycloaddition. The organocatalytic cycle consists of (1) a Diels-Alder reaction of an alkyne with a diarylisobenzofuran to form a benzooxanorbornadiene, (2) a 1,3-dipolar cycloaddition with an azide to form a 4,5-dihydro-1,2,3-triazole, and (3) a retro-Diels-Alder reaction that releases the triazole product and regenerates the diarylisobenzofuran organocatalyst. The diarylisobenzofuran organocatalyst was computationally designed to catalyze the reaction of perfluorophenyl azide and methyl propiolate to selectively form a 1,4-triazole product. Experimental validation of the designed organocatalyst was obtained with methyl 4-azido-2,3,5,6-tetrafluorobenzoate and methyl propiolate.

5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653951

RESUMO

Despite their desirable attributes, boronic acids have had a minimal impact in biological contexts. A significant problem has been their oxidative instability. At physiological pH, phenylboronic acid and its boronate esters are oxidized by reactive oxygen species at rates comparable to those of thiols. After considering the mechanism and kinetics of the oxidation reaction, we reasoned that diminishing electron density on boron could enhance oxidative stability. We found that a boralactone, in which a carboxyl group serves as an intramolecular ligand for the boron, increases stability by 104-fold. Computational analyses revealed that the resistance to oxidation arises from diminished stabilization of the p orbital of boron that develops in the rate-limiting transition state of the oxidation reaction. Like simple boronic acids and boronate esters, a boralactone binds covalently and reversibly to 1,2-diols such as those in saccharides. The kinetic stability of its complexes is, however, at least 20-fold greater. A boralactone also binds covalently to a serine side chain in a protein. These attributes confer unprecedented utility upon boralactones in the realms of chemical biology and medicinal chemistry.


Assuntos
Boro/química , Ácidos Borônicos/química , Concentração de Íons de Hidrogênio , Oxirredução
6.
J Am Chem Soc ; 145(12): 6615-6621, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920197

RESUMO

We introduce a versatile strategy for the bioreversible modification of proteins. Our strategy is based on a tricomponent molecule, synthesized in three steps, that incorporates a diazo moiety for chemoselective esterification of carboxyl groups, a pyridyl disulfide group for late-stage functionalization with thiolated ligands, and a self-immolative carbonate group for esterase-mediated cleavage. Using cytochrome c (Cyt c) and the green fluorescent protein (GFP) as models, we generated protein conjugates modified with diverse domains for cellular delivery that include a small molecule, targeting and cell-penetrating peptides (CPPs), and a large polysaccharide. As a proof of concept, we used our strategy to effect the delivery of proteins into the cytosol of live mammalian cells in the presence of serum. The cellular delivery of functional Cyt c, which induces apoptosis, highlighted the advantage of bioreversible conjugation on a carboxyl group versus irreversible conjugation on an amino group. The ease and utility of this traceless modification provide new opportunities for chemical biologists.


Assuntos
Peptídeos Penetradores de Células , Esterases , Animais , Proteínas de Fluorescência Verde/química , Esterases/metabolismo , Peptídeos Penetradores de Células/metabolismo , Esterificação , Compostos Azo , Mamíferos/metabolismo
7.
Anal Chem ; 95(40): 14981-14989, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37750823

RESUMO

The main protease of SARS-CoV-2, 3CLpro, is a dimeric enzyme that is indispensable to viral replication and presents an attractive opportunity for therapeutic intervention. Previous reports regarding the key properties of 3CLpro and its highly similar SARS-CoV homologue conflict dramatically. Values of the dimeric Kd and enzymic kcat/KM differ by 106- and 103-fold, respectively. Establishing a confident benchmark of the intrinsic capabilities of this enzyme is essential for combating the current pandemic as well as potential future outbreaks. Here, we use enzymatic methods to characterize the dimerization and catalytic efficiency of the authentic protease from SARS-CoV-2. Specifically, we use the rigor of Bayesian inference in a Markov Chain Monte Carlo analysis of progress curves to circumvent the limitations of traditional Michaelis-Menten initial rate analysis. We report that SARS-CoV-2 3CLpro forms a dimer at pH 7.5 that has Kd = 16 ± 4 nM and is capable of catalysis with kcat = 9.9 ± 1.5 s-1, KM = 0.23 ± 0.01 mM, and kcat/KM = (4.3 ± 0.7) × 104 M-1 s-1. We also find that enzymatic activity decreases substantially in solutions of high ionic strength, largely as a consequence of impaired dimerization. We conclude that 3CLpro is a more capable catalyst than appreciated previously, which has important implications for the design of antiviral therapeutic agents that target 3CLpro.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teorema de Bayes , Cisteína Endopeptidases , Peptídeo Hidrolases , Catálise , Antivirais
8.
J Org Chem ; 88(16): 11694-11701, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530571

RESUMO

Oxoanions such as carboxylates, phosphates, and sulfates play important roles in both chemistry and biology and are abundant on the cell surface. We report on the synthesis and properties of a rationally designed guanidinium-containing oxoanion binder, 1-guanidino-8-amino-2,7-diazacarbazole (GADAC). GADAC binds to a carboxylate, phosphate, and sulfate in pure water with affinities of 3.6 × 104, 1.1 × 103, and 4.2 × 103 M-1, respectively. Like 2-azacarbazole, which is a natural product that enables scorpions to fluoresce, GADAC is fluorescent in water (λabs = 356 nm, λem = 403 nm, ε = 13,400 M-1 cm-1). The quantum yield of GADAC is pH-sensitive, increasing from Φ = 0.12 at pH 7.4 to Φ = 0.53 at pH 4.0 as a result of the protonation of the aminopyridine moiety. The uptake of GADAC into live human melanoma cells is detectable in the DAPI channel at low micromolar concentrations. Its properties make GADAC a promising candidate for applications in oxoanion binding and fluorescence labeling in biological (e.g., the delivery of cargo into cells) and other contexts.


Assuntos
Fosfatos , Água , Humanos , Guanidina/química , Água/química , Ácidos Carboxílicos/química , Corantes
9.
Chem Rev ; 121(12): 6777-6801, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33651602

RESUMO

Cyclopentadiene is one of the most reactive dienes in normal electron-demand Diels-Alder reactions. The high reactivities and yields of cyclopentadiene cycloadditions make them ideal as click reactions. In this review, we discuss the history of the cyclopentadiene cycloaddition as well as applications of cyclopentadiene click reactions. Our emphasis is on experimental and theoretical studies on the reactivity and stability of cyclopentadiene and cyclopentadiene derivatives.


Assuntos
Ciclopentanos/química , Química Click , Reação de Cicloadição , Cinética
10.
J Pept Sci ; 29(5): e3468, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36494904

RESUMO

The field of cell-penetrating peptides is dominated by the use of oligomers of arginine residues. Octanol-water partitioning in the presence of an anionic lipid is a validated proxy for cell-penetrative efficacy. Here, we add one, two, or three N-methyl groups to Ac-Arg-NH2 and examine the effects on octanol-water partitioning. In the absence of an anionic lipid, none of these arginine derivatives can be detected in the octanol layer. In the presence of sodium dodecanoate, however, increasing N-methylation correlates with increasing partitioning into octanol, which is predictive of higher cell-penetrative ability. We then evaluated fully Nα -methylated oligoarginine peptides and observed an increase in their cellular penetration compared with canonical oligoarginine peptides in some contexts. These findings indicate that a simple modification, Nα -methylation, can enhance the performance of cell-penetrating peptides.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Arginina/química , Metilação , Octanóis/química , Água/química , Lipídeos
11.
Tetrahedron Lett ; 1302023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37860707

RESUMO

We combine the effects of spirocyclization and hyperconjugation to increase the Diels-Alder reactivity of the 4H-pyrazole scaffold. A density functional theory (DFT) investigation predicts that 4H-pyrazoles containing an oxetane functionality at the saturated center are extremely reactive despite having a relatively high-lying lowest unoccupied molecular orbital (LUMO) energy.

12.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37780415

RESUMO

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

13.
Proc Natl Acad Sci U S A ; 117(13): 7296-7304, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170021

RESUMO

Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.


Assuntos
Osso e Ossos/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Feminino , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Genes Homeobox/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Esqueleto/embriologia , Fatores de Transcrição/metabolismo
14.
Angew Chem Int Ed Engl ; 62(22): e202215614, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36964973

RESUMO

Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.


Assuntos
Aminoácidos , Proteínas , Proteínas/química , Aminoácidos/química
15.
Chembiochem ; 23(14): e202200258, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35527228

RESUMO

The S-alkylation of Cys residues with a maleimide and the Nϵ -acylation of Lys residues with an N-hydroxysuccinimide (NHS) ester are common methods for bioconjugation. Using Cys and Lys derivatives as proxies, we assessed differences in reactivity depending on the position of Cys or Lys in a protein sequence. We find that Cys position is exploitable to improve site-selectivity in maleimide-based modifications. Reactivity decreases substantially in the order N-terminal>in-chain>C-terminal Cys due to modulation of sulfhydryl pKa by the α-ammonium and carboxylate groups at the termini. A lower pKa value yields a larger fraction thiolate, which promotes selectivity while somewhat decreasing thiolate nucleophilicity in accord with ß n u c =0.41. Lowering pH and salt concentration enhances selectivity still further. In contrast, differences in the reactivity of Lys towards an NHS ester were modest due to an appreciable decrease in amino group nucleophilicity with a lower pKa of its conjugate acid. Hence, site-selective Lys modification protocols will require electrophiles other than NHS esters.


Assuntos
Cisteína , Lisina , Sequência de Aminoácidos , Cisteína/química , Ésteres , Lisina/química , Maleimidas
16.
Mol Pharm ; 19(11): 3869-3876, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036888

RESUMO

The carboxyl groups of a protein can be esterified by reaction with a diazo compound, 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide. This esterification enables the entry of the protein into the cytosol of a mammalian cell, where the nascent ester groups are hydrolyzed by endogenous esterases. The low aqueous solubility of the ensuing esterified protein is, however, a major practical challenge. Solubility screening revealed that ß-cyclodextrin (ß-CD) is an optimal solubilizing agent for esterified green fluorescent protein (est-GFP). Its addition can increase the recovery of est-GFP by 10-fold. α-CD, γ-CD, and cucurbit-7-uril are less effective excipients. 1H NMR titration experiments revealed that ß-CD encapsulates the hydrophobic tolyl group of ester conjugates with Ka = 321 M-1. Combining l-arginine and sucrose with ß-CD enables the nearly quantitative recovery of est-GFP. Thus, the insolubility of esterified proteins can be overcome with excipients.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Animais , Solubilidade , Excipientes/química , beta-Ciclodextrinas/química , Ésteres/química , Esterificação , Ciclodextrinas/química , Mamíferos
17.
J Org Chem ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374612

RESUMO

Organoboron acids are stable, organic-soluble Lewis acids with potential application as catalysts for a wide variety of chemical reactions. In this review, we summarize the utility of boronic and borinic acids, as well as boric acid, as catalysts for organic transformations. Typically, the catalytic processes exploit the Lewis acidity of trivalent boron, enabling the reversible formation of a covalent bond with oxygen. Our focus is on recent developments in the catalysis of dehydration, carbonyl condensation, acylation, alkylation, and cycloaddition reactions. We conclude that organoboron acids have a highly favorable prospectus as the source of new catalysts.

18.
Tetrahedron Lett ; 992022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35873104

RESUMO

Octanol-water partitioning experiments in the presence of carboxylate-, phosphate-, and sulfate-containing anionic lipids revealed that Ac-Cav-NH2 (where Cav refers to δ-oxa-arginine) partitions less into octanol than does Ac-Arg-NH2, suggesting that a cell-penetrating peptide based on canavanine would be relatively ineffective.

19.
J Am Chem Soc ; 143(25): 9489-9497, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151576

RESUMO

The 1,3-dipolar cycloaddition between azides and alkynes provides new means to probe and control biological processes. A major challenge is to achieve high reaction rates with stable reagents. The optimization of alkynyl reagents has relied on two strategies: increasing strain and tuning electronics. We report on the integration of these strategies. A computational analysis suggested that a CH → N aryl substitution in dibenzocyclooctyne (DIBO) could be beneficial. In transition states, the nitrogen of 2-azabenzo-benzocyclooctyne (ABC) engages in an n→π* interaction with the C=O of α-azidoacetamides and forms a hydrogen bond with the N-H of α-diazoacetamides. These dipole-specific interactions act cooperatively with electronic activation of the strained π-bond to increase reactivity. We found that ABC does indeed react more quickly with α-azidoacetamides and α-diazoacetamides than its constitutional isomer, dibenzoazacyclooctyne (DIBAC). ABC and DIBAC have comparable chemical stability in a biomimetic solution. Both ABC and DIBO are accessible in three steps by the alkylidene carbene-mediated ring expansion of commercial cycloheptanones. Our findings enhance the accessibility and utility of 1,3-dipolar cycloadditions and encourage further innovation.


Assuntos
Alcinos/síntese química , Azidas/química , Compostos Azo/química , Compostos Heterocíclicos com 3 Anéis/síntese química , Reação de Cicloadição
20.
RNA ; 25(8): 921-934, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31053653

RESUMO

Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.


Assuntos
Neurotoxina Derivada de Eosinófilo/deficiência , Fator XII/metabolismo , RNA/química , Animais , Coagulação Sanguínea , Tamanho Corporal , Neurotoxina Derivada de Eosinófilo/genética , Fator XI/metabolismo , Feminino , Fertilidade , Técnicas de Inativação de Genes , Masculino , Camundongos , Modelos Animais , Fenótipo , RNA/sangue , Estabilidade de RNA , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA