Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 38(6): 827-41, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620954

RESUMO

Here, we report the biochemical characterization of the nonspecific lethal (NSL) complex (NSL1, NSL2, NSL3, MCRS2, MBD-R2, and WDS) that associates with the histone acetyltransferase MOF in both Drosophila and mammals. Chromatin immunoprecipitation-Seq analysis revealed association of NSL1 and MCRS2 with the promoter regions of more than 4000 target genes, 70% of these being actively transcribed. This binding is functional, as depletion of MCRS2, MBD-R2, and NSL3 severely affects gene expression genome wide. The NSL complex members bind to their target promoters independently of MOF. However, depletion of MCRS2 affects MOF recruitment to promoters. NSL complex stability is interdependent and relies mainly on the presence of NSL1 and MCRS2. Tethering of NSL3 to a heterologous promoter leads to robust transcription activation and is sensitive to the levels of NSL1, MCRS2, and MOF. Taken together, we conclude that the NSL complex acts as a major transcriptional regulator in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Genoma de Inseto , Histona Acetiltransferases/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
2.
PLoS Genet ; 8(6): e1002736, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723752

RESUMO

MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas Nucleares , RNA Polimerase II , Fatores de Transcrição , Acetilação , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Genoma de Inseto , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular
3.
BMC Dev Biol ; 8: 68, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18588663

RESUMO

BACKGROUND: Metal-responsive transcription factor 1 (MTF-1), which binds to metal response elements (MREs), plays a central role in transition metal detoxification and homeostasis. A Drosophila interactome analysis revealed two candidate dMTF-1 interactors, both of which are related to the small regulatory protein Dumpy-30 (Dpy-30) of the worm C. elegans. Dpy-30 is the founding member of a protein family involved in chromatin modifications, notably histone methylation. Mutants affect mating type in yeast and male mating in C. elegans. RESULTS: Constitutive expression of the stronger interactor, Dpy-30L1 (CG6444), in transgenic flies inhibits MTF-1 activity and results in elevated sensitivity to Cd(II) and Zn(II), an effect that could be rescued by co-overexpression of dMTF-1. Electrophoretic mobility shift assays (EMSA) suggest that Dpy-30L1 interferes with the binding of MTF-1 to its cognate MRE binding site. Dpy-30L1 is expressed in the larval brain, gonads, imaginal discs, salivary glands and in the brain, testes, ovaries and salivary glands of adult flies. Expression of the second interactor, Dpy-30L2 (CG11591), is restricted to larval male gonads, and to the testes of adult males. Consistent with these findings, dpy-30-like transcripts are also prominently expressed in mouse testes. Targeted gene disruption by homologous recombination revealed that dpy-30L1 knockout flies are viable and show no overt disruption of metal homeostasis. In contrast, the knockout of the male-specific dpy-30L2 gene results in male sterility, as does the double knockout of dpy-30L1 and dpy-30L2. A closer inspection showed that Dpy-30L2 is expressed in elongated spermatids but not in early or mature sperm. Mutant sperm had impaired motility and failed to accumulate in sperm storage organs of females. CONCLUSION: Our studies help to elucidate the physiological roles of the Dumpy-30 proteins, which are conserved from yeast to humans and typically act in concert with other nuclear proteins to modify chromatin structure and gene expression. The results from these studies reveal an inhibitory effect of Dpy-30L1 on MTF-1 and an essential role for Dpy-30L2 in male fertility.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Fatores de Transcrição/fisiologia , Animais , Drosophila , Feminino , Masculino , Camundongos , Ligação Proteica , Elementos de Resposta , Espermatozoides/citologia , Distribuição Tecidual , Fator MTF-1 de Transcrição
4.
Mol Cell Biol ; 30(19): 4744-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20679484

RESUMO

Drosophila MCRS2 (dMCRS2; MCRS2/MSP58 and its splice variant MCRS1/p78 in humans) belongs to a family of forkhead-associated (FHA) domain proteins. Whereas human MCRS2 proteins have been associated with a variety of cellular processes, including RNA polymerase I transcription and cell cycle progression, dMCRS2 has been largely uncharacterized. Recent data show that MCRS2 is purified as part of a complex containing the histone acetyltransferase MOF (males absent on first) in both humans and flies. MOF mediates H4K16 acetylation and regulates the expression of a large number of genes, suggesting that MCRS2 could also have a function in transcription regulation. Here, we show that dMCRS2 copurifies with RNA polymerase II (RNAP II) complexes and localizes to the 5' ends of genes. Moreover, dMCRS2 is required for optimal recruitment of RNAP II to the promoter regions of cyclin genes. In agreement with this, dMCRS2 is required for normal levels of cyclin gene expression. We propose a model whereby dMCRS2 promotes gene transcription by facilitating the recruitment of RNAP II preinitiation complexes (PICs) to the promoter regions of target genes.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Western Blotting , Proliferação de Células , Células Cultivadas , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA
5.
Dev Dyn ; 235(4): 1053-64, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16477641

RESUMO

The genes don juan (dj) and don juan like (djl) encode basic proteins expressed in the male germline. Both proteins show a similar expression pattern being localized in the sperm heads during chromatin condensation and along the flagella. Prematurely expressed Don Juan-eGFP and Myc-Don Juan Like localize to the cytoplasm of spermatocytes and in mitochondrial derivatives from the nebenkern stage onward suggesting that both proteins associate with the mitochondria along the flagella in elongated spermatids. Premature expression of Myc-Don Juan Like does not impair spermatogenesis where-as Don Juan-eGFP when prematurely expressed causes male sterility as spermatids fail to individualize. In spite of the sequence identity of 72% on the nucleotide level and 42% on the protein level, the presumptive promoter regions and the untranslated regions of the mRNA are diverged. Our in vivo analysis revealed that don juan and don juan like are transcriptionally and translationally controlled by distinct short cis regulatory regions. Transcription of don juan and don juan like depends on the male germ line specific TAF(II)80, Cannonball (Can). Translational repression elements for both mRNAs are localized in the 5' UTR and are capable to form distinct secondary structures in close proximity to the translational initiation codon.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Flagelos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Espermátides/metabolismo , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência Consenso , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Genes de Insetos , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Masculino , Dados de Sequência Molecular , Mutação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Espermátides/citologia , Transcrição Gênica , beta-Galactosidase/análise , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA