Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 25(1): 54-61, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129128

RESUMO

Immune responses elicited against cancer using existing therapies such as vaccines or immune stimulatory antibodies are often not curative. One way to potentiate antitumor immunity is to enhance the long-term persistence of anti-tumor CD8+ T cells. Studies have shown that the persistence of activated CD8+ T cells is negatively impacted by the strength of interleukin 2 (IL-2) signaling. Here, we used small interfering RNAs (siRNAs) against CD25 (IL-2Rα) to attenuate IL-2 signaling in CD8+ T cells. The siRNAs were targeted to 4-1BB-expressing CD8+ T cells by conjugation to a 4-1BB-binding oligonucleotide aptamer. Systemic administration of the 4-1BB aptamer-CD25 siRNA conjugate downregulated CD25 mRNA only in 4-1BB-expressing CD8+ T cells promoting their differentiation into memory cells. Treatment with the 4-1BB aptamer-CD25 siRNA conjugates enhanced the antitumor response of a cellular vaccine or local radiation therapy. Indicative of the generality of this approach, 4-1BB aptamer-targeted delivery of an Axin-1 siRNA, a rate-limiting component of the ß-catenin destruction complex, enhanced CD8+ T cell memory development and antitumor activity. These findings show that aptamer-targeted siRNA therapeutics can be used to modulate the function of circulating CD8+ T cells, skewing their development into long-lasting memory CD8+ T cells, and thereby potentiating antitumor immunity.


Assuntos
Aptâmeros de Nucleotídeos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular , Sobrevivência Celular/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Memória Imunológica/imunologia , Imunoterapia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Neoplasias/terapia , Fenótipo , Interferência de RNA , RNA Interferente Pequeno
2.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747789

RESUMO

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comßVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.

3.
Front Med (Lausanne) ; 9: 897188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059820

RESUMO

Diabetic glomerular injury is a major complication of diabetes mellitus and is the leading cause of end stage renal disease (ESRD). Healthy podocytes are essential for glomerular function and health. Injury or loss of these cells results in increased proteinuria and kidney dysfunction and is a common finding in various glomerulopathies. Thus, mechanistic understanding of pathways that protect podocytes from damage are essential for development of future therapeutics. MicroRNA-146a (miR-146a) is a negative regulator of inflammation and is highly expressed in myeloid cells and podocytes. We previously reported that miR-146a levels are significantly reduced in the glomeruli of patients with diabetic nephropathy (DN). Here we report generation of mice with selective deletion of miR-146a in podocytes and use of these mice in models of glomerular injury. Induction of glomerular injury in C57BL/6 wildtype mice (WT) and podocyte-specific miR-146a knockout (Pod-miR146a-/-) animals via administration of low-dose lipopolysaccharide (LPS) or nephrotoxic serum (NTS) resulted in increased proteinuria in the knockout mice, suggesting that podocyte-expressed miR-146a protects these cells, and thus glomeruli, from damage. Furthermore, induction of hyperglycemia using streptozotocin (STZ) also resulted in an accelerated development of glomerulopathy and a rapid increase in proteinuria in the knockout animals, as compared to the WT animals, further confirming the protective role of podocyte-expressed miR-146a. We also confirmed that the direct miR-146a target, ErbB4, was significantly upregulated in the diseased glomeruli and erlotinib, an ErbB4 and EGFR inhibitor, reducedits upregulation and the proteinuria in treated animals. Primary miR146-/- podocytes from these animals also showed a basally upregulated TGFß-Smad3 signaling in vitro. Taken together, this study shows that podocyte-specific miR-146a is imperative for protecting podocytes from glomerular damage, via modulation of ErbB4/EGFR, TGFß, and linked downstream signaling.

4.
Cell Rep Methods ; 1(2)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34766102

RESUMO

Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.


Assuntos
Anticorpos , Corantes , Humanos , Animais , Camundongos , Imunofluorescência , Coloração e Rotulagem
5.
Front Oncol ; 10: 748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528880

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths in the United States. A major hurdle for improved therapies is immune suppression mediated by the tumor and its microenvironment. The lung tumor microenvironment (TME) contains large numbers of tumor-associated macrophages (TAMs), which suppress the adaptive immune response, increase neo-vascularization of the tumor, and provide pro-tumor factors to promote tumor growth. CD11b is highly expressed on myeloid cells, including TAMs, where it forms a heterodimeric integrin receptor with CD18 (known as CD11b/CD18, Mac-1, CR3, and αMß2), and plays an important role in recruitment and biological functions of these cells, and is a validated therapeutic target. Here, we describe our pre-clinical studies targeting CD11b in the context of lung cancer, using pharmacologic and genetic approaches that work via positive allosteric modulation of CD11b function. GB1275 is a novel small molecule modulator of CD11b that is currently in Phase 1/2 clinical development. We assess GB1275 treatment effects on tumor growth and immune infiltrates in the murine Lewis Lung Carcinoma (LLC) syngeneic tumor model. Additionally, as an orthogonal approach to determine mechanisms of action, we utilize our recently developed novel CD11b knock-in (KI) mouse that constitutively expresses CD11b containing an activating isoleucine to glycine substitution at residue 332 in the ligand binding CD11b A-domain (I332G) that acts as a positive allosteric modulator of CD11b activity. We report that pharmacologic modulation of CD11b with GB1275 significantly reduces LLC tumor growth. CD11b KI mice similarly show significant reduction in both the size and rate of LLC tumor growth, as compared to WT mice, mimicking our observed treatment effects with GB1275. Tumor profiling revealed a significant reduction in TAM infiltration in GB1275-treated and in CD11b KI mice, increase in the ratio of M1/M2-like TAMs, and concomitant increase in cytotoxic T cells. The profiling also showed a significant decrease in CCL2 levels and a concomitant reduction in Ly6Chi monocytes in circulation in both groups. These findings suggest that positive allosteric modulation of CD11b reduces TAM density and reprograms them to enhance the adaptive immune response and is a novel therapeutic strategy against lung cancer.

6.
Oncoimmunology ; 7(4): e1349588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632714

RESUMO

TGFß secreted by tumor cells and/or tumor infiltrating stromal cells is a key mediator of tumor growth and immune suppression at the tumor site. Nonetheless, clinical trials in cancer patients targeting the TGFß pathway exhibited at best a modest therapeutic benefit. A likely reason, a common limitation of many cancer drugs, is that the physiologic roles of TGFß in tissue homeostasis, angiogenesis, and immune regulation precluded the dose escalation necessary to achieve a profound clinical response. Murine studies have suggested that countering immune suppressive effects of TGFß may be sufficient to inhibit tumor growth. Here we describe an approach to render vaccine-activated CD8+ T cells transiently resistant to TGFß inhibition using an siRNA against Smad4 to inhibit a key step in the canonical TGFß signaling pathway. The siRNA was targeted to vaccine activated CD8+ T cells in the mouse by conjugation to a 4-1BB binding oligonucleotide (ODN) aptamer ligand (4-1BB-Smad4 conjugate). In vitro the 4-1BB-Smad4 conjugate rendered T cells partially resistant to TGFß inhibition, and treatment of tumor bearing mice with systemically administered 4-1BB-Smad4 conjugate enhanced vaccine- and irradiation-induced antitumor immunity. Limiting the inhibitory effects of TGFß to tumor-specific T cells will not interfere with its multiple physiologic roles and hence reduce the risk of toxicity.

7.
Nat Commun ; 9(1): 5379, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568188

RESUMO

Myeloid cells are recruited to damaged tissues where they can resolve infections and tumor growth or stimulate wound healing and tumor progression. Recruitment of these cells is regulated by integrins, a family of adhesion receptors that includes integrin CD11b. Here we report that, unexpectedly, integrin CD11b does not regulate myeloid cell recruitment to tumors but instead controls myeloid cell polarization and tumor growth. CD11b activation promotes pro-inflammatory macrophage polarization by stimulating expression of microRNA Let7a. In contrast, inhibition of CD11b prevents Let7a expression and induces cMyc expression, leading to immune suppressive macrophage polarization, vascular maturation, and accelerated tumor growth. Pharmacological activation of CD11b with a small molecule agonist, Leukadherin 1 (LA1), promotes pro-inflammatory macrophage polarization and suppresses tumor growth in animal models of murine and human cancer. These studies identify CD11b as negative regulator of immune suppression and a target for cancer immune therapy.


Assuntos
Benzoatos/uso terapêutico , Antígeno CD11b/metabolismo , Macrófagos/metabolismo , Melanoma Experimental/imunologia , MicroRNAs/metabolismo , Tioidantoínas/uso terapêutico , Animais , Benzoatos/farmacologia , Antígeno CD11b/agonistas , Macrófagos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos Transgênicos , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tioidantoínas/farmacologia
8.
Oncoimmunology ; 3: e28811, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057446

RESUMO

Persistence of vaccine-induced immune responses, not the initial magnitude, best correlates with protective antitumor immunity. In mice, oligonucleotide aptamer-targeted siRNA inhibition of mammalian target of rapamycin (mTOR) activity in activated CD8+ T cells promotes their differentiation into functionally competent memory cells leading to enhanced antitumor immunity, a protective effect superior to that of non-targeted administration of the mTOR inhibitor rapamycin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA