Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 36(4): 1086-95, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818499

RESUMO

We previously reported that pharmacological inhibition of a class of enzymes known as prolyl hydroxylase domain proteins (PHDs) has neuroprotective effects in various in vitro and in vivo models of Parkinson's disease (PD). We hypothesized that this was due to inhibition of the PHD2 isoform, preventing it from hydroxylating the transcription factor hypoxia inducible factor 1 α (HIF1α), targeting it for eventual proteasomal degradation. HIF1α itself induces the transcription of various cellular stress genes, including several involved in iron metabolism. Although all three isoforms of PHD are expressed within vulnerable dopaminergic (DAergic) substantia nigra pars compacta neurons, only select downregulation of the PHD2 isoform was found to protect against in vivo neurodegenerative effects associated with the mitochondrial neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. These findings were corroborated in induced pluripotent stem cell-derived neurons, providing validation in a pertinent human cell model. PHD2 inhibition was found to result in increased expression of ATP13A2, mutation of which is responsible for a rare juvenile form of PD known as Kufor-Rakeb syndrome. Knockdown of ATP13A2 expression within human DAergic cells was found to abrogate restoration of cellular iron homeostasis and neuronal cell viability elicited by inhibition of PHD2 under conditions of mitochondrial stress, likely via effects on lysosomal iron storage. These data suggest that regulation of ATP13A2 by the PHD2-HIF1α signaling pathway affects cellular iron homeostasis and DAergic neuronal survival. This constitutes a heretofore unrecognized process associated with loss of ATP13A2 function that could have wide-ranging implications for it as a therapeutic target for PD and other related conditions. SIGNIFICANCE STATEMENT: Reductions in PHD2 activity within dopaminergic neurons in vivo and in cultured human induced pluripotent stem cell-derived neurons protects against mitochondrial stress-induced neurotoxicity. Protective effects are dependent on downstream HIF-1α expression. Knockdown of ATP13A2, a gene linked to a rare juvenile form of Parkinson's disease and recently identified as a novel HIF1α target, was found to abrogate maintenance of cellular iron homeostasis and neuronal viability elicited by PHD2 inhibition in vivo and in cultured dopaminergic cells under conditions of mitochondrial stress. Mechanistically, this was due to ATP13A2's role in maintaining lysosomal iron stores. This constitutes a novel mechanism by which alterations in ATP13A2 activity may be driving PD-related neuropathology.


Assuntos
Adenosina Trifosfatases/metabolismo , Homeostase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Transtornos Parkinsonianos/metabolismo , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/genética , Animais , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Neuroblastoma/patologia , Transtornos Parkinsonianos/induzido quimicamente , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , ATPases Translocadoras de Prótons , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Pharmacol Exp Ther ; 362(3): 413-423, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28642233

RESUMO

Monoamine oxidase B (MAO-B) has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased MAO-B expression in astroglia has been observed adjacent to amyloid plaques in AD patient brains. This phenomenon is hypothesized to lead to increased production of hydrogen peroxide and reactive oxygen species (ROS), thereby contributing to AD pathology. Therefore, reduction of ROS-induced oxidative stress via inhibition of MAO-B activity may delay the progression of the disease. In the present study we report the pharmacological properties of sembragiline, a novel selective MAO-B inhibitor specifically developed for the treatment of AD, and on its effect on ROS-mediated neuronal injury and astrogliosis in MAO-B transgenic animals. Sembragiline showed potent and long-lasting MAO-B-selective inhibition and did not inhibit MAO-A at doses where full inhibition of MAO-B was observed. Such selectivity should translate into a favorable clinical safety profile. Indeed, sembragiline neither induced the serotonin syndrome when administered together with the serotonin precursor l-5-hydroxytryptophan in combination with antidepressants such as fluoxetine, nor potentiated the pressor effect of tyramine. Additionally, in experiments using a transgenic animal model conditionally overexpressing MAO-B in astroglia, sembragiline protected against neuronal loss and reduced both ROS formation and reactive astrogliosis. Taken together, these findings warrant further investigation of the potential therapeutic benefit of MAO-B inhibitors in patients with AD and other neurologic disorders.


Assuntos
Acetamidas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/uso terapêutico , Monoaminoxidase/efeitos dos fármacos , Pirrolidinonas/uso terapêutico , 5-Hidroxitriptofano/farmacologia , Acetamidas/farmacocinética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Gliose/tratamento farmacológico , Gliose/patologia , Humanos , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Masculino , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacocinética , Atividade Motora/efeitos dos fármacos , Neurotransmissores/metabolismo , Pirrolidinonas/farmacocinética , Ratos , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Distribuição Tecidual
3.
J Neurosci ; 35(37): 12833-44, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377470

RESUMO

Following its activation by PINK1, parkin is recruited to depolarized mitochondria where it ubiquitinates outer mitochondrial membrane proteins, initiating lysosomal-mediated degradation of these organelles. Mutations in the gene encoding parkin, PARK2, result in both familial and sporadic forms of Parkinson's disease (PD) in conjunction with reductions in removal of damaged mitochondria. In contrast to what has been reported for other PARK2 mutations, expression of the Q311X mutation in vivo in mice appears to involve a downstream step in the autophagic pathway at the level of lysosomal function. This coincides with increased PARIS expression and reduced expression of a reciprocal signaling pathway involving the master mitochondrial regulator peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) and the lysosomal regulator transcription factor EB (TFEB). Treatment with rapamycin was found to independently restore PGC1α-TFEB signaling in a manner not requiring parkin activity and to abrogate impairment of mitochondrial quality control and neurodegenerative features associated with this in vivo model. Losses in PGC1α-TFEB signaling in cultured rat DAergic cells expressing the Q311X mutation associated with reduced mitochondrial function and cell viability were found to be PARIS-dependent and to be independently restored by rapamycin in a manner requiring TFEB. Studies in human iPSC-derived neurons demonstrate that TFEB induction can restore mitochondrial function and cell viability in a mitochondrially compromised human cell model. Based on these data, we propose that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via upregulation of TFEB function. SIGNIFICANCE STATEMENT: Mutations in PARK2 are generally associated with loss in ability to interact with PINK1, impacting on autophagic initiation. Our data suggest that, in the case of at least one parkin mutation, Q311X, detrimental effects are due to inhibition at the level of downstream lysosomal function. Mechanistically, this involves elevations in PARIS protein levels and subsequent effects on PGC1α-TFEB signaling that normally regulates mitochondrial quality control. Treatment with rapamycin independently restores PGC1α-TFEB signaling in a manner not requiring parkin activity and abrogates subsequent mitochondrial impairment and neuronal cell loss. Taken in total, our data suggest that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via rapamycin.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Mitocôndrias/fisiologia , Mutação Puntual , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Autofagia , Cruzamentos Genéticos , Neurônios Dopaminérgicos/citologia , Complexo I de Transporte de Elétrons/fisiologia , Comportamento Exploratório , Humanos , Lisossomos/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Proteínas Repressoras/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Neurobiol Dis ; 93: 115-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27185595

RESUMO

Loss of parkin E3 ligase activity as a result of parkin gene mutation in rare familial forms of Parkinson's disease (PD) has been shown to be detrimental to mitochondrial function and to contribute to ensuing neurodegeneration. This has been shown by ourselves and others to be in part due to reductions in parkin-mediated ubiquitination of the transcriptional repressor PARIS, limiting the protein's subsequent degradation by the proteasome. Subsequent elevations in PARIS protein levels result in reduced expression of the master mitochondrial regulator PGC-1α, impacting in turn on mitochondrial function. Here, we report that oxidatively-mediated reductions in parkin solubility and function in a mouse model of age-related sporadic PD coincides with increased PARIS levels and reduced PGC-1α signaling. Furthermore, restoration of PGC-1α expression was found to abrogate losses in mitochondrial function and degeneration of dopaminergic (DAergic) neurons within the substantia nigra pars compacta (SNpc) associated with this particular model. These findings suggest that the PGC-1α signaling pathway constitutes a viable therapeutic target for the treatment of not only familial PD, but also more common sporadic forms of the disorder.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância Negra/metabolismo
5.
J Neurochem ; 131(1): 74-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848702

RESUMO

In this study, in vitro and in vivo experiments were carried out with the high-affinity multifunctional D2/D3 agonist D-512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre-treatment with D-512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6-hydroxydopamine administration in a dose-dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre-treatment with 0.5 mg/kg D-512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D-512 may constitute a novel viable therapy for Parkinson's disease.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Indóis/uso terapêutico , Transtornos Parkinsonianos/prevenção & controle , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Tiazóis/uso terapêutico , Animais , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidopamina/toxicidade , Células PC12 , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia
6.
J Neurosci ; 31(12): 4524-34, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430153

RESUMO

Dopaminergic neurons of the substantia nigra pars compacta are defective in Parkinson's disease, but the specificity of this dysfunction is not understood. One hypothesis is that mitochondrial bioenergetic capacity is intrinsically lower in striatal dopaminergic presynaptic nerve varicosities, making them unusually susceptible to inhibition of electron transport by oxidative damage. To test this hypothesis, we separated isolated synaptosomes bearing dopamine transporters using immunomagnetic beads and compared their respiration with that of the residual nondopaminergic synaptosomes. As predicted, dopaminergic synaptosomes from striatum had lower respiratory rates. However, so did dopaminergic synaptosomes from cortex, indicating a lack of the predicted striatal specificity. We used fluorescent probes to analyze the bioenergetic competence of individual synaptosomes in the two fractions. The respiratory differences became nonsignificant when respiration rates were normalized to the number of respiration-competent synaptosomes, suggesting that differences reflected the quality of the different fractions. To circumvent damage induced by synaptosomal separation, we monitored membrane potentials in whole unseparated single synaptosomes using fluorescent imaging, and then identified the dopaminergic subpopulation using a fluorescent dopamine transporter substrate (ASP(+) [4-(4-diethylaminostyryl)-N-methylpyridinium iodide]). The capacity of dopaminergic and nondopaminergic synaptosomes to maintain plasma membrane and mitochondrial membrane potential under several stresses did not differ. In addition, this capacity did not decline in either subpopulation with age, a risk factor for Parkinson's disease. We conclude that the intrinsic bioenergetic capacities of dopaminergic and nondopaminergic presynaptic synaptosomes from mice do not differ.


Assuntos
Dopamina/fisiologia , Metabolismo Energético/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Sinaptossomos/fisiologia , Envelhecimento/fisiologia , Animais , Cálcio/fisiologia , Corpo Estriado/fisiologia , Dopamina/metabolismo , Feminino , Imunofluorescência , Indicadores e Reagentes , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Consumo de Oxigênio , Compostos de Piridínio/farmacologia , Sinaptossomos/metabolismo
7.
J Biol Chem ; 284(42): 29065-76, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19679656

RESUMO

Hypoxia-inducible factor (HIF) plays an important role in cell survival by regulating iron, antioxidant defense, and mitochondrial function. Pharmacological inhibitors of the iron-dependent enzyme class prolyl hydroxylases (PHD), which target alpha subunits of HIF proteins for degradation, have recently been demonstrated to alleviate neurodegeneration associated with stroke and hypoxic-ischemic injuries. Here we report that inhibition of PHD by 3,4-dihydroxybenzoate (DHB) protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic cell loss and up-regulates HIF-1alpha within these neurons. Elevations in mRNA and protein levels of HIF-dependent genes heme oxygenase-1 (Ho-1) and manganese superoxide dismutase (Mnsod) following DHB pretreatment alone are also maintained in the presence of MPTP. MPTP-induced reductions in ferroportin and elevations in nigral and striatal iron levels were reverted to levels comparable with that of untreated controls with DHB pretreatment. Reductions in pyruvate dehydrogenase mRNA and activity resulting from MPTP were also found to be attenuated by DHB. In vitro, the HIF pathway was activated in N27 cells grown at 3% oxygen treated with either PHD inhibitors or an iron chelator. Concordant with our in vivo data, the MPP(+)-elicited increase in total iron as well as decreases in cell viability were attenuated in the presence of DHB. Taken together, these data suggest that protection against MPTP neurotoxicity may be mediated by alterations in iron homeostasis and defense against oxidative stress and mitochondrial dysfunction brought about by cellular HIF-1alpha induction. This study provides novel data extending the possible therapeutic utility of HIF induction to a Parkinson disease model of neurodegeneration, which may prove beneficial not only in this disorder itself but also in other diseases associated with metal-induced oxidative stress.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/química , Fator 1 Induzível por Hipóxia/metabolismo , Doença de Parkinson/tratamento farmacológico , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Animais , Regulação da Expressão Gênica , Heme Oxigenase-1/química , Hidroxibenzoatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Oxigênio/química , Doença de Parkinson/patologia , RNA Mensageiro/metabolismo , Ratos
8.
Neuron ; 37(6): 899-909, 2003 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-12670420

RESUMO

Studies on postmortem brains from Parkinson's patients reveal elevated iron in the substantia nigra (SN). Selective cell death in this brain region is associated with oxidative stress, which may be exacerbated by the presence of excess iron. Whether iron plays a causative role in cell death, however, is controversial. Here, we explore the effects of iron chelation via either transgenic expression of the iron binding protein ferritin or oral administration of the bioavailable metal chelator clioquinol (CQ) on susceptibility to the Parkinson's-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP). Reduction in reactive iron by either genetic or pharmacological means was found to be well tolerated in animals in our studies and to result in protection against the toxin, suggesting that iron chelation may be an effective therapy for prevention and treatment of the disease.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Ferritinas/genética , Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Doença de Parkinson Secundária/prevenção & controle , Doença de Parkinson/tratamento farmacológico , Ácido 3,4-Di-Hidroxifenilacético/análise , Animais , Western Blotting , Morte Celular , Clioquinol/uso terapêutico , Dopamina/análise , Ferritinas/metabolismo , Expressão Gênica , Terapia Genética , Ácido Homovanílico/análise , Humanos , Imuno-Histoquímica , Quelantes de Ferro/metabolismo , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Regiões Promotoras Genéticas , Ratos , Substância Negra/química , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/genética
9.
J Neurosci ; 27(51): 13997-4006, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18094238

RESUMO

Parkinson's disease is a neurodegenerative disorder characterized by the preferential loss of midbrain dopaminergic neurons in the substantia nigra (SN). One of the earliest detectable biochemical alterations that occurs in the Parkinsonian brain is a marked reduction in SN levels of total glutathione (glutathione plus glutathione disulfide), occurring before losses in mitochondrial complex I (CI) activity, striatal dopamine levels, or midbrain dopaminergic neurodegeneration associated with the disease. Previous in vitro data from our laboratory has suggested that prolonged depletion of dopaminergic glutathione results in selective impairment of mitochondrial complex I activity through a reversible thiol oxidation event. To address the effects of depletion in dopaminergic glutathione levels in vivo on the nigrostriatal system, we created genetically engineered transgenic mouse lines in which expression of gamma-glutamyl cysteine ligase, the rate-limiting enzyme in de novo glutathione synthesis, can be inducibly downregulated in catecholaminergic neurons, including those of the SN. A novel method for isolation of purified dopaminergic striatal synaptosomes was used to study the impact of dopaminergic glutathione depletion on mitochondrial events demonstrated previously to occur in vitro as a consequence of this alteration. Dopaminergic glutathione depletion was found to result in a selective reversible thiol-oxidation-dependent mitochondrial complex I inhibition, followed by an age-related nigrostriatal neurodegeneration. This suggests that depletion in glutathione within dopaminergic SN neurons has a direct impact on mitochondrial complex I activity via increased nitric oxide-related thiol oxidation and age-related dopaminergic SN cell loss.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/fisiologia , Glutationa/biossíntese , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Fatores Etários , Animais , Sobrevivência Celular/fisiologia , Dopamina/genética , Glutationa/genética , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Neurônios/metabolismo , Neurônios/patologia
10.
Neurotoxicology ; 65: 166-173, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29471019

RESUMO

The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.


Assuntos
Neurônios Dopaminérgicos/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Mitocôndrias/patologia , Chaperonas Moleculares/metabolismo , Doença de Parkinson/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , Animais , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Prolina Dioxigenases do Fator Induzível por Hipóxia , Limoninas/farmacologia , Mitocôndrias/efeitos dos fármacos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Fármacos Neuroprotetores/farmacologia , Ratos
11.
Cell Rep ; 22(4): 930-940, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386135

RESUMO

Exposure to the herbicide paraquat (PQ) is associated with an increased risk of idiopathic Parkinson's disease (PD). Therapies based on PQ's presumed mechanisms of action have not, however, yielded effective disease therapies. Cellular senescence is an anticancer mechanism that arrests proliferation of replication-competent cells and results in a pro-inflammatory senescence-associated secretory phenotype (SASP) capable of damaging neighboring tissues. Here, we demonstrate that senescent cell markers are preferentially present within astrocytes in PD brain tissues. Additionally, PQ was found to induce astrocytic senescence and an SASP in vitro and in vivo, and senescent cell depletion in the latter protects against PQ-induced neuropathology. Our data suggest that exposure to certain environmental toxins promotes accumulation of senescent cells in the aging brain, which can contribute to dopaminergic neurodegeneration. Therapies that target senescent cells may constitute a strategy for treatment of sporadic PD, for which environmental exposure is a major risk factor.


Assuntos
Senescência Celular/fisiologia , Neuropatologia/métodos , Paraquat/efeitos adversos , Doença de Parkinson/etiologia , Animais , Humanos , Camundongos , Doença de Parkinson/patologia , Fatores de Risco
12.
Brain Res ; 1140: 188-94, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16631136

RESUMO

Ferritin elevation has been reported by some laboratories to occur within the substantia nigra (SN), the area of the brain affected in Parkinson's disease (PD), but whether such an increase could be causatively involved in neurodegeneration associated with the disorder is unknown. Here, we report that chronic ferritin elevation in midbrain dopamine-containing neurons results in a progressive age-related neurodegeneration of these cells. This provides strong evidence that chronic ferritin overload could be directly involved in age-related neurodegeneration such as occurs in Parkinson's and other related diseases.


Assuntos
Envelhecimento , Dopamina/metabolismo , Ferritinas/metabolismo , Degeneração Neural , Neurônios/metabolismo , Substância Negra/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fatores Etários , Animais , Comportamento Exploratório/fisiologia , Ferritinas/genética , Fluoresceínas , Expressão Gênica/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Transgênicos , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Compostos Orgânicos/metabolismo , Coloração pela Prata , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Neuropharmacology ; 123: 88-99, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533164

RESUMO

Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.


Assuntos
2,2'-Dipiridil/análogos & derivados , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Piperazinas/farmacologia , alfa-Sinucleína/toxicidade , 2,2'-Dipiridil/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidopamina/toxicidade , Células PC12 , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Neurosci Lett ; 402(1-2): 137-41, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16644116

RESUMO

Glutathione is an abundant intracellular thiol antioxidant whose levels are reduced both in Parkinson's disease itself and in a widely used animal model of the disorder, systemic MPTP administration. Previous in vitro work from our laboratory has suggested that glutathione depletion may be directly responsible for mitochondrial dysfunction, which ultimately leads to dopaminergic cell death associated with the disease. Here, we demonstrate the ability of gamma-glutamylcysteine ethyl ester, a lipid permeable derivative of the major substrate for scavenger glutathione synthesis, to counteract glutathione loss and neurodegeneration associated with in vitro and in vivo administration of MPTP or its derivatives. This data suggests that prevention of glutathione depletion is a likely therapeutic target for the disease.


Assuntos
Dipeptídeos/uso terapêutico , Glutationa/metabolismo , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Análise de Variância , Animais , Butionina Sulfoximina/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Biochem Pharmacol ; 64(5-6): 1037-48, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213603

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease involving neurodegeneration of dopaminergic neurons of the substantia nigra (SN), a part of the midbrain. Oxidative stress has been implicated to play a major role in the neuronal cell death associated with PD. Importantly, there is a drastic depletion in cytoplasmic levels of the thiol tripeptide glutathione within the SN of PD patients. Glutathione (GSH) exhibits several functions in the brain chiefly acting as an antioxidant and a redox regulator. GSH depletion has been shown to affect mitochondrial function probably via selective inhibition of mitochondrial complex I activity. An important biochemical feature of neurodegeneration during PD is the presence of abnormal protein aggregates present as intracytoplasmic inclusions called Lewy bodies. Oxidative damage via GSH depletion might also accelerate the build-up of defective proteins leading to cell death of SN dopaminergic neurons by impairing the ubiquitin-proteasome pathway of protein degradation. Replenishment of normal glutathione levels within the brain may hold an important key to therapeutics for PD. Several reports have suggested that iron accumulation in the SN patients might also contribute to oxidative stress during PD.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Glutationa/uso terapêutico , Humanos , Estresse Oxidativo/fisiologia , Doença de Parkinson/tratamento farmacológico
16.
CNS Neurol Disord Drug Targets ; 13(1): 120-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24040809

RESUMO

Previously published data from our laboratory demonstrated that pharmacological inhibition of a family of enzymes known as prolyl hydroxylase domain proteins prevents neurotoxicity associated with the acute 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine intoxication model of Parkinson's disease in young animals. In this study, we assessed whether prolyl hydroxylase domain inhibition was neuroprotective in an inducible genetic dopaminergic glutathione depletion model previously characterized by our laboratory that more closely recapitulates the age-related and progressive nature of the human disease. Pharmacological prolyl hydroxylase domain inhibition via 3,4-dihydroxybenzoate was found to significantly attenuate hallmark mitochondrial dysfunction and loss of dopaminergic substantia nigral pars compacta neurons associated with this model. These studies further validate the possibility that prolyl hydroxylase domain inhibition may constitute a viable therapy for Parkinson's disease.


Assuntos
Doença de Parkinson/tratamento farmacológico , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/uso terapêutico , Fatores Etários , Análise de Variância , Animais , Butionina Sulfoximina/toxicidade , Linhagem Celular Transformada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/toxicidade , Glutationa/genética , Hidroxibenzoatos/uso terapêutico , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
17.
Brain Res ; 1591: 111-7, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25452026

RESUMO

Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Lítio/farmacologia , Doença de Parkinson/tratamento farmacológico , Envelhecimento , Animais , Modelos Animais de Doenças , Dopamina/farmacologia , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/genética , Substância Negra/efeitos dos fármacos
18.
Parkinsons Dis ; 2012: 364684, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666629

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized in part by the preferential loss of nigrostriatal dopaminergic neurons. Although the precise etiology of PD is unknown, accumulating evidence suggests that PD involves microglial activation that exerts neurotoxic effects through production of proinflammatory cytokines and increased oxidative and nitrosative stress. Thus, controlling microglial activation has been suggested as a therapeutic target for combating PD. Previously we demonstrated that pharmacological inhibition of a class of enzymes known as prolyl hydroxylases via 3,4-dihydroxybenzoate administration protected against MPTP-induced neurotoxicity, however the exact mechanisms involved were not elucidated. Here we show that this may be due to DHB's ability to inhibit microglial activation. DHB significantly attenuated LPS-mediated induction of nitric oxide synthase and pro-inflammatory cytokines in murine BV2 microglial cells in vitro in conjunction with reduced ROS production and activation of NFκB and MAPK pathways possibly due to up-regulation of HO-1 levels. HO-1 inhibition partially abrogates LPS-mediated NFκB activity and subsequent NO induction. In vivo, DHB pre-treatment suppresses microglial activation elicited by MPTP treatment. Our results suggest that DHB's neuroprotective properties could be due to its ability to dampen induction of microglial activation via induction of HO-1.

19.
Brain Res ; 1297: 17-22, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19699718

RESUMO

While ferritin elevation within dopaminergic (DA) neurons of the substantia nigra (SN) is protective against neurodegeneration elicited by two toxin models of Parkinson's disease (PD), MPTP and paraquat, in young animals, its prolonged elevation results in a selective age-related neurodegeneration. A similar age-related neurodegeneration has been reported in iron regulatory protein 2-deficient (IRP2 -/-) mice coinciding with increased ferritin levels within degenerating neurons. This has been speculated to be due to subsequent reductions in the labile iron pool (LIP) needed for the synthesis of iron-sulfur-containing enzymes. In order to assess whether LIP reduction is responsible for age-related neurodegeneration in our ferritin transgenics, we examined LIP levels in ferritin-expressing transgenics with increasing age. While LIP levels were reduced within DA SN nerve terminals isolated from young ferritin transgenics compared to wildtype littermate controls, they were found to be increased in older transgenic animals at the age at which selective neurodegeneration is first noted. Furthermore, administration of the bioavailable iron chelator, clioquinol (CQ), to older mice was found to protect against both increased LIP and subsequent dopaminergic neurodegeneration. This suggests that age-related neurodegeneration in these mice is likely due to increased iron availability rather than its reduction. This may have important implications for PD and other related neurodegenerative conditions in which iron and ferritin have been implicated.


Assuntos
Envelhecimento/metabolismo , Apoferritinas/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Envelhecimento/patologia , Animais , Apoferritinas/genética , Quelantes/farmacologia , Clioquinol/farmacologia , Dopamina/metabolismo , Regulação da Expressão Gênica/fisiologia , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/complicações , Distúrbios do Metabolismo do Ferro/fisiopatologia , Camundongos , Camundongos Transgênicos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Substância Negra/patologia , Substância Negra/fisiopatologia
20.
Antioxid Redox Signal ; 11(9): 2083-94, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19290777

RESUMO

Parkinson's disease (PD) is characterized by early glutathione depletion in the substantia nigra (SN). Among its various functions in the cell, glutathione acts as a substrate for the mitochondrial enzyme glutaredoxin 2 (Grx2). Grx2 is involved in glutathionylation of protein cysteine sulfhydryl residues in the mitochondria. Although monothiol glutathione-dependent oxidoreductases (Grxs) have previously been demonstrated to be involved in iron-sulfur (Fe-S) center biogenesis, including that in yeast, here we report data suggesting the involvement of mitochondrial Grx2, a dithiol Grx, in iron-sulfur biogenesis in a mammalian dopaminergic cell line. Given that mitochondrial dysfunction and increased cellular iron levels are two important hallmarks of PD, this suggests a novel potential mechanism by which glutathione depletion may affect these processes in dopaminergic neurons. We report that depletion of glutathione as substrate results in a dose-dependent Grx2 inhibition and decreased iron incorporation into a mitochondrial complex I (CI) and aconitase (m-aconitase). Mitochondrial Grx2 inhibition through siRNA results in a corresponding decrease in CI and m-aconitase activities. It also results in significant increases in iron-regulatory protein (IRP) binding, likely as a consequence of conversion of Fe-S-containing cellular aconitase to its non-Fe-S-containing IRP1 form. This is accompanied by increased transferrin receptor, decreased ferritin, and subsequent increases in mitochondrial iron levels. This suggests that glutathione depletion may affect important pathologic cellular events associated with PD through its effects on Grx2 activity and mitochondrial Fe-S biogenesis.


Assuntos
Dopamina/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Animais , Sequência de Bases , Técnicas de Silenciamento de Genes , Glutarredoxinas/genética , Espectrometria de Massas , Doença de Parkinson/patologia , RNA Interferente Pequeno , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA