Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 22(1): 54, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782162

RESUMO

BACKGROUND: The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials. METHODS: Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles. RESULTS: The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method. CONCLUSION: For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.


Assuntos
Antimaláricos , Artemisininas , Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Antimaláricos/farmacologia , Teorema de Bayes , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Cloroquina/farmacologia , Plasmodium falciparum , Zoonoses , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia
2.
Clin Infect Dis ; 75(8): 1379-1388, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35180298

RESUMO

BACKGROUND: Acetaminophen inhibits cell-free hemoglobin-induced lipid peroxidation and improves renal function in severe falciparum malaria but has not been evaluated in other infections with prominent hemolysis, including Plasmodium knowlesi malaria. METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis. RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively). CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis. CLINICAL TRIALS REGISTRATION: NCT03056391.


Assuntos
Injúria Renal Aguda , Malária , Plasmodium knowlesi , Acetaminofen/uso terapêutico , Injúria Renal Aguda/tratamento farmacológico , Creatinina , Hemoglobinas/uso terapêutico , Hemólise , Humanos , Rim/fisiologia , Malária/complicações , Malária/tratamento farmacológico , Malásia
3.
Clin Infect Dis ; 70(3): 361-367, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30889244

RESUMO

BACKGROUND: Malaysia aims to eliminate malaria by 2020. However, while cases of Plasmodium falciparum and Plasmodium vivax have decreased substantially, the incidence of zoonotic malaria from Plasmodium knowlesi continues to increase, presenting a major challenge to regional malaria control efforts. Here we report incidence of all Plasmodium species in Sabah, including zoonotic P. knowlesi, during 2015-2017. METHODS: Microscopy-based malaria notification data and polymerase chain reaction (PCR) results were obtained from the Sabah Department of Health and State Public Health Laboratory, respectively, from January 2015 to December 2017. From January 2016 this was complemented by a statewide prospective hospital surveillance study. Databases were matched, and species was determined by PCR, or microscopy if PCR was not available. RESULTS: A total of 3867 malaria cases were recorded between 2015 and 2017, with PCR performed in 93%. Using PCR results, and microscopy if PCR was unavailable, P. knowlesi accounted for 817 (80%), 677 (88%), and 2030 (98%) malaria cases in 2015, 2016, and 2017, respectively. P. falciparum accounted for 110 (11%), 45 (6%), and 23 (1%) cases and P. vivax accounted for 61 (6%), 17 (2%), and 8 (0.4%) cases, respectively. Of those with P. knowlesi, the median age was 35 (interquartile range: 24-47) years, and 85% were male. CONCLUSIONS: Malaysia is approaching elimination of the human-only Plasmodium species. However, the ongoing increase in P. knowlesi incidence presents a major challenge to malaria control and warrants increased focus on knowlesi-specific prevention activities. Wider molecular surveillance in surrounding countries is required.


Assuntos
Malária , Plasmodium knowlesi , Adulto , Feminino , Humanos , Incidência , Malária/epidemiologia , Malária/prevenção & controle , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium knowlesi/genética , Estudos Prospectivos , Adulto Jovem
4.
Malar J ; 19(1): 306, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854695

RESUMO

BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples. METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated. RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi. CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Monitoramento Epidemiológico , Plasmodium knowlesi/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , Adolescente , Adulto , Criança , Feminino , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/isolamento & purificação , Plasmodium malariae/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adulto Jovem
5.
Clin Infect Dis ; 69(10): 1703-1711, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30624597

RESUMO

BACKGROUND: Plasmodium knowlesi causes severe and fatal malaria, and incidence in Southeast Asia is increasing. Factors associated with death are not clearly defined. METHODS: All malaria deaths in Sabah, Malaysia, from 2015 to 2017 were identified from mandatory reporting to the Sabah Department of Health. Case notes were reviewed, and a systematic review of these and all previously reported fatal P. knowlesi cases was conducted. Case fatality rates (CFRs) during 2010-2017 were calculated using incidence data from the Sabah Department of Health. RESULTS: Six malaria deaths occurred in Sabah during 2015-2017, all from P. knowlesi. Median age was 40 (range, 23-58) years; 4 cases (67%) were male. Three (50%) had significant cardiovascular comorbidities and 1 was pregnant. Delays in administering appropriate therapy contributed to 3 (50%) deaths. An additional 26 fatal cases were included in the systematic review. Among all 32 cases, 18 (56%) were male; median age was 56 (range, 23-84) years. Cardiovascular-metabolic disease, microscopic misdiagnosis, and delay in commencing intravenous treatment were identified in 11 of 32 (34%), 26 of 29 (90%), and 11 of 31 (36%) cases, respectively. The overall CFR during 2010-2017 was 2.5/1000: 6.0/1000 for women and 1.7/1000 for men (P = .01). Independent risk factors for death included female sex (odds ratio, 2.6; P = .04), and age ≥45 years (odds ratio, 4.7; P < .01). CONCLUSIONS: Earlier presentation, more rapid diagnosis, and administration of intravenous artesunate may avoid fatal outcomes, particularly in females, older adults, and patients with cardiovascular comorbidities.


Assuntos
Malária/mortalidade , Plasmodium knowlesi/patogenicidade , Administração Intravenosa , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Comorbidade , Feminino , Humanos , Incidência , Malária/tratamento farmacológico , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Fatores Sexuais , Adulto Jovem
6.
Clin Infect Dis ; 66(2): 229-236, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-29020373

RESUMO

Background: Plasmodium knowlesi is reported increasingly across Southeast Asia and is the most common cause of malaria in Malaysia. No randomized trials have assessed the comparative efficacy of artemether-lumefantrine (AL) for knowlesi malaria. Methods: A randomized controlled trial was conducted in 3 district hospitals in Sabah, Malaysia to compare the efficacy of AL against chloroquine (CQ) for uncomplicated knowlesi malaria. Participants were included if they weighed >10 kg, had a parasitemia count <20000/µL, and had a negative rapid diagnostic test result for Plasmodium falciparum histidine-rich protein 2. Diagnosis was confirmed by means of polymerase chain reaction. Patients were block randomized to AL (total target dose, 12 mg/kg for artemether and 60 mg/kg for lumefantrine) or CQ (25 mg/kg). The primary outcome was parasite clearance at 24 hours in a modified intention-to-treat analysis. Results: From November 2014 to January 2016, a total of 123 patients (including 18 children) were enrolled. At 24 hours after treatment 76% of patients administered AL (95% confidence interval [CI], 63%-86%; 44 of 58) were aparasitemic, compared with 60% administered CQ (47%-72%; 39 of 65; risk ratio, 1.3 [95% CI, 1.0-1.6]; P = .06). Overall parasite clearance was shorter after AL than after CQ (median, 18 vs 24 hours, respectively; P = .02), with all patients aparasitemic by 48 hours. By day 42 there were no treatment failures. The risk of anemia during follow-up was similar between arms. Patients treated with AL would require lower bed occupancy than those treated with CQ (2414 vs 2800 days per 1000 patients; incidence rate ratio, 0.86 [95% CI, .82-.91]; P < .001). There were no serious adverse events. Conclusions: AL is highly efficacious for treating uncomplicated knowlesi malaria; its excellent tolerability and rapid therapeutic response allow earlier hospital discharge, and support its use as a first-line artemisinin-combination treatment policy for all Plasmodium species in Malaysia. Clinical trials registration: NCT02001012.


Assuntos
Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Cloroquina/administração & dosagem , Malária/tratamento farmacológico , Plasmodium knowlesi/isolamento & purificação , Adolescente , Adulto , Idoso , Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/efeitos adversos , Criança , Pré-Escolar , Cloroquina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Humanos , Malária/parasitologia , Malásia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
7.
Clin Infect Dis ; 67(3): 350-359, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29873683

RESUMO

Background: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking. Methods: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia. Results: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/µL [interquartile range, 538-8481/µL]) than in falciparum (9600/µL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/µL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults). Conclusions: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/µL.


Assuntos
Malária/complicações , Malária/epidemiologia , Plasmodium knowlesi/isolamento & purificação , Índice de Gravidade de Doença , Injúria Renal Aguda/parasitologia , Fatores Etários , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Rim/patologia , Malária/tratamento farmacológico , Malásia/epidemiologia , Masculino , Parasitemia , Plasmodium knowlesi/genética , Estudos Prospectivos
8.
Malar J ; 17(1): 463, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526613

RESUMO

BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia. METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count < 100,000/µL admitted to 3 adjacent district hospitals in Sabah, East Malaysia. On day 3 and 4 all patients were administered split dose mefloquine (total dose 25 mg/kg) and followed for 28 days. Twenty-one kelch13 polymorphisms associated with P. falciparum artemisinin resistance were also evaluated in P. falciparum isolates collected from patients presenting to health facilities predominantly within the tertiary referral area of western Sabah between 2012 and 2016. RESULTS: In total, 49 patients were enrolled and treated with oral artesunate. 90% (44/49) of patients had cleared their parasitaemia by 48 h and 100% (49/49) within 72 h. The geometric mean parasite count at presentation was 9463/µL (95% CI 6757-13,254), with a median time to 50% parasite clearance of 4.3 h (IQR 2.0-8.4). There were 3/45 (7%) patients with a parasite clearance slope half-life of ≥ 5 h. All 278 P. falciparum isolates evaluated were wild-type for kelch13 markers. CONCLUSION: There is no suspected or confirmed evidence of endemic artemisinin-resistant P. falciparum in this pre-elimination setting in Sabah, Malaysia. Current guidelines recommending first-line treatment with ACT remain appropriate for uncomplicated malaria in Sabah, Malaysia. Ongoing surveillance is needed southeast of the Greater Mekong sub-region.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Adolescente , Adulto , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Marcadores Genéticos/genética , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Carga Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Resultado do Tratamento , Adulto Jovem
9.
Malar J ; 16(1): 135, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359340

RESUMO

BACKGROUND: The 2016 World Health Organization (WHO) World Malaria Report documents substantial progress towards control and elimination of malaria. However, major challenges remain. In some regions of Southeast Asia, the simian parasite Plasmodium knowlesi has emerged as an important cause of human malaria, and the authors believe this species warrants regular inclusion in the World Malaria Report. MAIN TEXT: Plasmodium knowlesi is the most common cause of malaria in Malaysia, and cases have also been reported in nearly all countries of Southeast Asia. Outside of Malaysia, P. knowlesi is frequently misdiagnosed by microscopy as Plasmodium falciparum or Plasmodium vivax. Thus, P. knowlesi may be underdiagnosed in affected regions and its true incidence underestimated. Acknowledgement in the World Malaria Report of the regional importance of P. knowlesi will facilitate efforts to improve surveillance of this emerging parasite. Furthermore, increased recognition will likely lead to improved delivery of effective treatment for this potentially fatal infection, as has occurred in Malaysia where P. knowlesi case-fatality rates have fallen despite rising incidence. In a number of knowlesi-endemic countries, substantial progress has been made towards the elimination of P. vivax and P. falciparum. However, efforts to eliminate these human-only species should not preclude efforts to reduce human malaria from P. knowlesi. The regional importance of knowlesi malaria was recognized by the WHO with its recent Evidence Review Group meeting on knowlesi malaria to address strategies for prevention and mitigation. CONCLUSION: The WHO World Malaria Report has an appropriate focus on falciparum and vivax malaria, the major causes of global mortality and morbidity. However, the authors hope that in future years this important publication will also incorporate data on the progress and challenges in reducing knowlesi malaria in regions where transmission occurs.


Assuntos
Malária/epidemiologia , Malária/parasitologia , Plasmodium knowlesi/isolamento & purificação , Ásia , Sudeste Asiático/epidemiologia , Controle de Doenças Transmissíveis/métodos , Saúde Global , Humanos , Malária/mortalidade , Malária/prevenção & controle , Prevalência , Organização Mundial da Saúde
10.
Clin Infect Dis ; 62(11): 1403-1411, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27107287

RESUMO

BACKGROUND: Chloroquine (CQ)-resistant Plasmodium vivax is increasingly reported throughout southeast Asia. The efficacy of CQ and alternative artemisinin combination therapies (ACTs) for vivax malaria in Malaysia is unknown. METHODS: A randomized, controlled trial of CQ vs artesunate-mefloquine (AS-MQ) for uncomplicated vivax malaria was conducted in 3 district hospitals in Sabah, Malaysia. Primaquine was administered on day 28. The primary outcome was the cumulative risk of treatment failure by day 28 by Kaplan-Meier analysis. RESULTS: From 2012 to 2014, 103 adults and children were enrolled. Treatment failure by day 28 was 61.1% (95% confidence interval [CI], 46.8-75.6) after CQ and 0% (95% CI, 0-.08) following AS-MQ (P < .001), of which 8.2% (95% CI, 2.5-9.6) were early treatment failures. All patients with treatment failure had therapeutic plasma CQ concentrations at day 7. Compared with CQ, AS-MQ was associated with faster parasite clearance (normalized clearance slope, 0.311 vs 0.127; P < .001) and fever clearance (mean, 19.0 vs 37.7 hours; P =001) and with lower risk of anemia at day 28 (odds ratio = 3.7; 95% CI, 1.5-9.3; P =005). Gametocytes were present at day 28 in 23.8% (10/42) of patients following CQ vs none with AS-MQ (P < .001). AS-MQ resulted in lower bed occupancy: 4037 vs 6510 days/1000 patients (incidence rate ratio 0.62; 95% CI, .60-.65; P < .001). One patient developed severe anemia not regarded as related to their AS-MQ treatment. CONCLUSIONS: High-grade CQ-resistant P. vivax is prevalent in eastern Malaysia. AS-MQ is an efficacious ACT for all malaria species. Wider CQ-efficacy surveillance is needed in vivax-endemic regions with earlier replacement with ACT when treatment failure is detected.Clinical Trials Registration NCT01708876.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Resistência a Medicamentos , Malária Vivax , Mefloquina/uso terapêutico , Plasmodium vivax , Adolescente , Adulto , Idoso , Artesunato , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/patogenicidade , Resultado do Tratamento , Adulto Jovem
11.
Emerg Infect Dis ; 22(1): 41-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26690736

RESUMO

Deaths from Plasmodium knowlesi malaria have been linked to delayed parenteral treatment. In Malaysia, early intravenous artesunate is now recommended for all severe malaria cases. We describe P. knowlesi fatalities in Sabah, Malaysia, during 2012-2014 and report species-specific fatality rates based on 2010-2014 case notifications. Sixteen malaria-associated deaths (caused by PCR-confirmed P. knowlesi [7], P. falciparum [7], and P. vivax [1] and microscopy-diagnosed "P. malariae" [1]) were reported during 2012-2014. Six patients with severe P. knowlesi malaria received intravenous artesunate at hospital admission. For persons ≥15 years of age, overall fatality rates during 2010-2014 were 3.4, 4.2, and 1.0 deaths/1,000 P. knowlesi, P. falciparum, and P. vivax notifications, respectively; P. knowlesi-associated fatality rates fell from 9.2 to 1.6 deaths/1,000 notifications. No P. knowlesi-associated deaths occurred among children, despite 373 notified cases. Although P. knowlesi malaria incidence is rising, the notification-fatality rate has decreased, likely due to improved use of intravenous artesunate.


Assuntos
Malária/epidemiologia , Malária/mortalidade , Plasmodium knowlesi/patogenicidade , Adulto , Idoso , Feminino , Humanos , Incidência , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade
12.
PLoS Negl Trop Dis ; 18(8): e0012424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150978

RESUMO

The risk of severe malaria from the zoonotic parasite Plasmodium knowlesi approximates that from P. falciparum. In severe falciparum malaria, neutrophil activation contributes to inflammatory pathogenesis, including acute lung injury (ALI). The role of neutrophil activation in the pathogenesis of severe knowlesi malaria has not been examined. We evaluated 213 patients with P. knowlesi mono-infection (138 non-severe, 75 severe) and 49 Plasmodium-negative controls from Malaysia. Markers of neutrophil activation (soluble neutrophil elastase [NE], citrullinated histone [CitH3] and circulating neutrophil extracellular traps [NETs]) were quantified in peripheral blood by microscopy and immunoassays. Findings were correlated with malaria severity, ALI clinical criteria, biomarkers of parasite biomass, haemolysis, and endothelial activation. Neutrophil activation increased with disease severity, with median levels higher in severe than non-severe malaria and controls for NE (380[IQR:210-930]ng/mL, 236[139-448]ng/mL, 218[134-307]ng/mL, respectively) and CitH3 (8.72[IQR:3.0-23.1]ng/mL, 4.29[1.46-9.49]ng/mL, 1.53[0.6-2.59]ng/mL, respectively)[all p<0.01]. NETs were higher in severe malaria compared to controls (126/µL[IQR:49-323] vs 51[20-75]/µL, p<0.001). In non-severe malaria, neutrophil activation fell significantly upon discharge from hospital (p<0.03). In severe disease, NETs, NE, and CitH3 were correlated with parasitaemia, cell-free haemoglobin and angiopoietin-2 (all Pearson's r>0.24, p<0.05). Plasma NE and angiopoietin-2 were higher in knowlesi patients with ALI than those without (p<0.008); neutrophilia was associated with an increased risk of ALI (aOR 3.27, p<0.01). In conclusion, neutrophil activation is increased in ALI and in proportion to disease severity in knowlesi malaria, is associated with endothelial activation, and may contribute to disease pathogenesis. Trials of adjunctive therapies to regulate neutrophil activation are warranted in severe knowlesi malaria.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Malária , Ativação de Neutrófilo , Neutrófilos , Plasmodium knowlesi , Índice de Gravidade de Doença , Humanos , Masculino , Feminino , Malária/imunologia , Malária/sangue , Malária/parasitologia , Adulto , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/parasitologia , Lesão Pulmonar Aguda/patologia , Pessoa de Meia-Idade , Neutrófilos/imunologia , Armadilhas Extracelulares/imunologia , Malásia , Biomarcadores/sangue , Adulto Jovem , Elastase de Leucócito/sangue , Histonas/sangue , Adolescente
13.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345442

RESUMO

Apicomplexa are single-celled eukaryotes that can infect humans and include the mosquito-borne parasite Plasmodium, the cause of malaria. Increasing rates of drug resistance in human-only Plasmodium species are reducing the efficacy of control efforts and antimalarial treatments. There are also rising cases of P. knowlesi, the only zoonotic Plasmodium species that causes severe disease and death in humans. Thus, there is a need to develop additional innovative strategies to combat malaria. Viruses that infect non-Plasmodium spp. Disease-causing protozoa have been shown to affect pathogen life cycle and disease outcomes. However, only one virus (Matryoshka RNA virus 1) has been identified in Plasmodium, and none have been identified in zoonotic Plasmodium species. The rapid expansion of the known RNA virosphere using structure- and artificial intelligence-based methods suggests that this dearth is due to the divergent nature of RNA viruses that infect protozoa. We leveraged these newly uncovered data sets to explore the virome of human-infecting Plasmodium species collected in Sabah, east (Borneo) Malaysia. We identified a highly divergent RNA virus in two human-infecting P. knowlesi isolates that is related to the unclassified group 'ormycoviruses'. By characterising fifteen additional ormycoviruses identified in the transcriptomes of arthropods we show that this group of viruses exhibits a complex ecology at the arthropod-mammal interface. Through the application of artificial intelligence methods, we then demonstrate that the ormycoviruses are part of a diverse and unclassified viral taxon. This is the first observation of an RNA virus in a zoonotic Plasmodium species. By linking small-scale experimental data to large-scale virus discovery advances, we characterise the diversity and genomic architecture of an unclassified viral taxon. This approach should be used to further explore the virome of disease-causing Apicomplexa and better understand how protozoa-infecting viruses may affect parasite fitness, pathobiology, and treatment outcomes.

14.
EBioMedicine ; 105: 105189, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851058

RESUMO

BACKGROUND: The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria. METHODS: We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA. FINDINGS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated. INTERPRETATION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency. FUNDING: National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).


Assuntos
Ferritinas , Hepcidinas , Homeostase , Ferro , Malária , Humanos , Feminino , Ferro/metabolismo , Ferro/sangue , Masculino , Adulto , Hepcidinas/sangue , Hepcidinas/metabolismo , Malária/sangue , Malária/parasitologia , Malária/metabolismo , Ferritinas/sangue , Receptores da Transferrina/metabolismo , Receptores da Transferrina/sangue , Pessoa de Meia-Idade , Malásia/epidemiologia , Adulto Jovem , Estudos Longitudinais , Malária Falciparum/parasitologia , Malária Falciparum/sangue , Malária Falciparum/metabolismo , Eritropoetina/metabolismo , Eritropoetina/sangue , Biomarcadores , Parasitemia/sangue
15.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746350

RESUMO

Background: The emergence of the zoonotic monkey parasite Plasmodium knowlesi as the dominant cause of malaria in Malaysia has disrupted current national WHO elimination goals. Malaysia has free universal access to malaria care; however, out-of-pocket costs are unknown. This study estimated household costs of illness attributable to malaria due to P. knowlesi against other non-zoonotic Plasmodium species infections in Sabah, Malaysia. Methodology/Principal Findings: Household costs were estimated from patient-level surveys collected from four hospitals between 2013 and 2016. Direct costs including medical and associated travel costs, and indirect costs due to lost productivity were included. One hundred and fifty-two malaria cases were enrolled: P. knowlesi (n=108), P. vivax (n=22), P. falciparum (n=16), and P. malariae (n=6). Costs were inflated to 2022 Malaysian Ringgits and reported in United States dollars (US$). Across all cases, the mean total costs were US$138 (SD=108), with productivity losses accounting for 58% of costs (US$80; SD=73). P. vivax had the highest mean total household cost at US$210, followed by P. knowlesi (US$127), P. falciparum (US$126), and P. malariae (US$105). Most patients (80%) experienced direct health costs above 10% of monthly income, with 58 (38%) patients experiencing health spending over 25% of monthly income, consistent with catastrophic health expenditure. Conclusions/Significance: Despite Malaysia's free health-system care for malaria, patients and families face other related medical, travel, and indirect costs. Household out-of-pocket costs were driven by productivity losses; primarily attributed to infections in working-aged males in rural agricultural-based occupations. Costs for P. knowlesi were comparable to P. falciparum and lower than P. vivax. The higher P. vivax costs related to direct health facility costs for repeat monitoring visits given the liver-stage treatment required. AUTHOR SUMMARY: Knowlesi malaria is due to infection with a parasite transmitted by mosquitos from monkeys to humans. Most people who are infected work or live near the forest. It is now the major type of malaria affecting humans in Malaysia. The recent increase of knowlesi malaria cases in humans has impacted individuals, families, and health systems in Southeast Asia. Although the region has made substantial progress towards eliminating human-only malaria species, knowlesi malaria threatens elimination targets as traditional control measures do not address the parasite reservoir in monkeys. The economic burden of illness due to knowlesi malaria has not previously been estimated or subsequently compared with other malaria species. We collected data on the cost of illness to households in Sabah, Malaysia, to estimate their related total economic burden. Medical costs and time off work and usual activities were substantial in patients with the four species of malaria diagnosed during the time of this study. This research highlights the financial burden which households face when seeking care for malaria in Malaysia, despite the free treatment provided by the government.

16.
PLoS Negl Trop Dis ; 18(1): e0011570, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252650

RESUMO

BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.


Assuntos
Anopheles , Malária , Plasmodium knowlesi , Animais , Humanos , Estudos Prospectivos , Sudeste Asiático/epidemiologia , Malária/parasitologia , Malásia/epidemiologia , Macaca/parasitologia , Anopheles/parasitologia
17.
Nat Commun ; 15(1): 8863, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419988

RESUMO

Cases of H5 highly pathogenic avian influenzas (HPAI) are on the rise. Although mammalian spillover events are rare, H5N1 viruses have an estimated mortality rate in humans of 60%. No human cases of H5 infection have been reported in Malaysian Borneo, but HPAI has circulated in poultry and migratory avian species transiting through the region. Recent deforestation in coastal habitats in Malaysian Borneo may increase the proximity between humans and migratory birds. We hypothesise that higher rates of human-animal contact, caused by this habitat destruction, will increase the likelihood of potential zoonotic spillover events. In 2015, an environmentally stratified cross-sectional survey was conducted collecting geolocated questionnaire data in 10,100 individuals. A serological survey of these individuals reveals evidence of H5 neutralisation that persisted following depletion of seasonal H1/H3 HA binding antibodies from the plasma. The presence of these antibodies suggests that some individuals living near migratory sites may have been exposed to H5 HA. There is a spatial and environmental overlap between individuals displaying high H5 HA binding and the distribution of migratory birds. We have developed a novel surveillance approach including both spatial and serological data to detect potential spillover events, highlighting the urgent need to study cross-species pathogen transmission in migratory zones.


Assuntos
Migração Animal , Anticorpos Antivirais , Aves , Ecossistema , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Influenza Aviária/sangue , Influenza Aviária/transmissão , Aves/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/sangue , Bornéu , Estudos Transversais , Masculino , Feminino , Malásia/epidemiologia , Adulto , Pessoa de Meia-Idade
18.
medRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38633782

RESUMO

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

19.
Sci Rep ; 13(1): 4760, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959462

RESUMO

Plasmodium knowlesi is the major cause of zoonotic malaria in Southeast Asia. Rapid and accurate diagnosis enables effective clinical management. A novel malaria diagnostic tool, Gazelle (Hemex Health, USA) detects haemozoin, a by-product of haem metabolism found in all Plasmodium infections. A pilot phase refined the Gazelle haemozoin identification algorithm, with the algorithm then tested against reference PCR in a larger cohort of patients with P. knowlesi mono-infections and febrile malaria-negative controls. Limit-of-detection analysis was conducted on a subset of P. knowlesi samples serially diluted with non-infected whole blood. The pilot phase of 40 P. knowlesi samples demonstrated 92.5% test sensitivity. P. knowlesi-infected patients (n = 203) and febrile controls (n = 44) were subsequently enrolled. Sensitivity and specificity of the Gazelle against reference PCR were 94.6% (95% CI 90.5-97.3%) and 100% (95% CI 92.0-100%) respectively. Positive and negative predictive values were 100% and 98.8%, respectively. In those tested before antimalarial treatment (n = 143), test sensitivity was 96.5% (95% CI 92.0-98.9%). Sensitivity for samples with ≤ 200 parasites/µL (n = 26) was 84.6% (95% CI 65.1-95.6%), with the lowest parasitaemia detected at 18/µL. Limit-of-detection (n = 20) was 33 parasites/µL (95% CI 16-65%). The Gazelle device has the potential for rapid, sensitive detection of P. knowlesi infections in endemic areas.


Assuntos
Antílopes , Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Malária/diagnóstico
20.
medRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609228

RESUMO

Background: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. Methods & Results: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. Discussion: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA