Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stat Med ; 37(3): 357-374, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29114916

RESUMO

While epidermal nerve fiber (ENF) data have been used to study the effects of small fiber neuropathies through the density and the spatial patterns of the ENFs, little research has been focused on the effects on the individual nerve fibers. Studying the individual nerve fibers might give a better understanding of the effects of the neuropathy on the growth process of the individual ENFs. In this study, data from 32 healthy volunteers and 20 diabetic subjects, obtained from suction induced skin blister biopsies, are analyzed by comparing statistics for the nerve fibers as a whole and for the segments that a nerve fiber is composed of. Moreover, it is evaluated whether this type of data can be used to detect diabetic neuropathy, by using hierarchical models to perform unsupervised classification of the subjects. It is found that using the information about the individual nerve fibers in combination with the ENF counts yields a considerable improvement as compared to using the ENF counts only.


Assuntos
Biometria/métodos , Neuropatias Diabéticas/diagnóstico , Modelos Lineares , Fibras Nervosas/patologia , Algoritmos , Biópsia , Epiderme , Humanos , Modelos Estatísticos , Método de Monte Carlo , Índice de Gravidade de Doença
2.
Sci Total Environ ; 858(Pt 2): 159683, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336060

RESUMO

Climate change may affect the carbon sink function of peatlands through warming and drying. Fine-root biomass production (FRBP) of sedge fens, a widespread peatland habitat, is important in this context, since most of the biomass is below ground in these ecosystems. We examined the response of fine-root biomass production, depth distribution (10 cm intervals down to 60 cm), chemical characteristics, and decomposition along with other main litter types (sedge leaves, Sphagnum moss shoots) to an average May-to-October warming of 1.7 °C above ambient daily mean temperature and drying of 2-8 cm below ambient soil water-table level (WL) in two sedge fens situated in Northern and Southern Boreal zones. Warming was induced with open top chambers and drying with shallow ditching. Finally, we simulated short-term organic matter (OM) accumulation using net primary production and mass loss data. Total FRBP, and FRBP in deeper layers, was clearly higher in southern than northern fen. Drying significantly increased, and warming marginally increased, total FRBP, while warming significantly increased, and drying marginally increased, the proportional share of FRBP in deeper layers. Drying, especially, modified root chemistry as the relative proportions of fats, wax, lipids, lignin and other aromatics increased while the proportion of polysaccharides decreased. Warming did not affect the decomposition of any litter types, while drying reduced the decomposition of sedge leaf litter. Although drying increased OM accumulation from root litter at both fens, total OM accumulation decreased at the southern fen, while the northern fen with overall lower values showed no such pattern. Our results suggest that in warmer and/or modestly drier conditions, sedge fen FRBP will increase and/or be allocated to deeper soil layers. These changes along with the altered litter inputs may sustain the soil carbon sink function through OM accumulation, unless the WL falls below a tipping point.


Assuntos
Ecossistema , Sphagnopsida , Biomassa , Mudança Climática , Solo/química
3.
PLoS One ; 16(7): e0254254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264981

RESUMO

Taiga bean goose (Anser fabalis fabalis) is an endangered subspecies that breeds sporadically in remote habitats in the arctic and boreal zones. Due to its elusive behaviour, there is a paucity of knowledge on the behaviour of taiga bean goose during the breeding season, and survey methods for monitoring numbers in the breeding areas are lacking. Camera traps are a useful tool for wildlife monitoring, particularly when there is a need for non-invasive methods due to the shy nature of the species. In this study, we tested the use of camera traps to investigate seasonal and diel activity patterns of taiga bean goose in Finland over two successive breeding seasons, 2018 and 2019. We did this by modelling counts of geese from images with generalized linear and additive mixed models. The camera type (cameras placed by experts specialized in bean goose ecology vs randomly placed cameras) did not influence the count of taiga bean goose (p = 0.386). However, the activity varied significantly by region, Julian day, time of day and temperature, with the study site (individual peatland) and year adding substantial random variation and uncertainty in the counts. Altogether, the best fitting model explained nearly 70% of the variation in taiga bean goose activity. The peak in activity occurred about a month later in the southernmost region compared to the more northern regions, which may indicate behaviours related to migration rather than breeding and moulting. Our results show that long-term monitoring with game camera traps provide a potential unobtrusive approach for studying the behavioural patterns of taiga bean goose and can increase our ecological knowledge of this little-known subspecies. The results can be applied to planning of the annual censuses and finding the optimal time frame for their execution.


Assuntos
Gansos , Animais , Estações do Ano , Taiga
4.
J Ecol ; 107(2): 711-721, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007275

RESUMO

Uncovering the roles of biotic interactions in assembling and maintaining species-rich communities remains a major challenge in ecology. In plant communities, interactions between individuals of different species are expected to generate positive or negative spatial interspecific associations over short distances. Recent studies using individual-based point pattern datasets have concluded that (a) detectable interspecific interactions are generally rare, but (b) are most common in communities with fewer species; and (c) the most abundant species tend to have the highest frequency of interactions. However, it is unclear how the detection of spatial interactions may change with the abundances of each species, or the scale and intensity of interactions. We ask if statistical power is sufficient to explain all three key results.We use a simple two-species model, assuming no habitat associations, and where the abundances, scale and intensity of interactions are controlled to simulate point pattern data. In combination with an approximation to the variance of the spatial summary statistics that we sample, we investigate the power of current spatial point pattern methods to correctly reject the null model of pairwise species independence.We show the power to detect interactions is positively related to both the abundances of the species tested, and the intensity and scale of interactions, but negatively related to imbalance in abundances. Differences in detection power in combination with the abundance distributions found in natural communities are sufficient to explain all the three key empirical results, even if all pairwise interactions are identical. Critically, many hundreds of individuals of both species may be required to detect even intense interactions, implying current abundance thresholds for including species in the analyses are too low. Sy n thesis. The widespread failure to reject the null model of spatial interspecific independence could be due to low power of the tests rather than any key biological process. Since we do not model habitat associations, our results represent a first step in quantifying sample sizes required to make strong statements about the role of biotic interactions in diverse plant communities. However, power should be factored into analyses and considered when designing empirical studies.

5.
Sci Rep ; 8(1): 9757, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950657

RESUMO

The ability to grow on solid culture medium is a pre-requisite for a successful microbial genetic model organism. Skeletonema marinoi, a bloom-forming, planktonic marine microalga, is widely used in ecological, evolutionary and population genetics studies. We have tested and confirmed the ability of this common organism to grow on solid culture medium (agar) under experimentally manipulated conditions. We established a protocol for quantifying growth characteristics - length of lag phase, growth rate, maximum biomass yield - on agar medium. The procedure was tested under experimental treatments and the resulting growth changes correlated with those observed in standard liquid culture. The ability to grow on solid medium broadens the use of S. marinoi as a molecular model, where agar is routinely used for various purposes (growth, selection, storage); and the possibility to quantify colony growth opens the way for high throughput, automated, or semi-automated phenotyping solutions.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Plâncton/crescimento & desenvolvimento , Meios de Cultura , Genética Populacional , Fenótipo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA