Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Commun ; 13(1): 601, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105893

RESUMO

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. We show that two consecutive mutations (R203K/G204R) in the nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found increased interaction of GSK3A kinase simultaneously with hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein. Furthermore, the host cell transcriptome analysis suggests that the mutant N protein produces dysregulated interferon response genes. Here, we provide crucial information in linking the R203K/G204R mutations in the N protein to modulations of host-virus interactions and underline the potential of the nucleocapsid protein as a drug target during infection.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação de Sentido Incorreto , SARS-CoV-2/genética , COVID-19/enzimologia , COVID-19/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Fosforilação , Filogenia , Ligação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Arábia Saudita , Carga Viral , Replicação Viral
2.
BMC Med Genomics ; 13(1): 103, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680510

RESUMO

BACKGROUND: Testing strategies is crucial for genetics clinics and testing laboratories. In this study, we tried to compare the hit rate between solo and trio and trio plus testing and between trio and sibship testing. Finally, we studied the impact of extended family analysis, mainly in complex and unsolved cases. METHODS: Three cohorts were used for this analysis: one cohort to assess the hit rate between solo, trio and trio plus testing, another cohort to examine the impact of the testing strategy of sibship genome vs trio-based analysis, and a third cohort to test the impact of an extended family analysis of up to eight family members to lower the number of candidate variants. RESULTS: The hit rates in solo, trio and trio plus testing were 39, 40, and 41%, respectively. The total number of candidate variants in the sibship testing strategy was 117 variants compared to 59 variants in the trio-based analysis. We noticed that the average number of coding candidate variants in trio-based analysis was 1192 variants and 26,454 noncoding variants, and this number was lowered by 50-75% after adding additional family members, with up to two coding and 66 noncoding homozygous variants only, in families with eight family members. CONCLUSION: There was no difference in the hit rate between solo and extended family members. Trio-based analysis was a better approach than sibship testing, even in a consanguineous population. Finally, each additional family member helped to narrow down the number of variants by 50-75%. Our findings could help clinicians, researchers and testing laboratories select the most cost-effective and appropriate sequencing approach for their patients. Furthermore, using extended family analysis is a very useful tool for complex cases with novel genes.


Assuntos
Consanguinidade , Exoma , Família , Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos , Variação Genética , Adulto , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos , Sequenciamento do Exoma
3.
Bioinformatics ; 23(20): 2672-7, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17724060

RESUMO

MOTIVATION: It is known that most genomic regions of special interest, e.g. horizontally acquired sequences, genomic islands, etc. have distinct word (m-mer) compositions. Most of the earlier work along this direction, addressed di- and tri-nucleotide compositions. We present an approach that can be applied to analyze compositions of any given word size. The method, called the centroid approach, can reveal compositionally distinct regions in genomic sequences for any given word size. RESULTS: We applied our method to 50 bacterial genomes and demonstrated its ability to identify embedded sequences of varying lengths from distantly related organisms. We also investigated the genetic makeup of the regions identified as compositionally distinct by our method, for four organisms from our dataset. Pathogenicity island (PAI) components and genes encoding strain-specific proteins are all frequently seen to be constituents of these regions. AVAILABILITY: Program is available on request from the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Análise de Sequência de DNA/métodos , Fatores de Virulência/genética , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA