Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39031613

RESUMO

Psychiatric disorders have a complex biological underpinning likely involving an interplay of genetic and environmental risk contributions. Substantial efforts are being made to use artificial intelligence approaches to integrate features within and across data types to increase our etiological understanding and advance personalized psychiatry. Network science offers a conceptual framework for exploring the often complex relationships across different levels of biological organization, from cellular mechanistic to brain-functional and phenotypic networks. Utilizing such network information effectively as part of artificial intelligence approaches is a promising route toward a more in-depth understanding of illness biology, the deciphering of patient heterogeneity, and the identification of signatures that may be sufficiently predictive to be clinically useful. Here, we present examples of how network information has been used as part of artificial intelligence within psychiatry and beyond and outline future perspectives on how personalized psychiatry approaches may profit from a closer integration of psychiatric research, artificial intelligence development, and network science.

2.
Bioinformatics ; 38(21): 4919-4926, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36073911

RESUMO

MOTIVATION: In multi-cohort machine learning studies, it is critical to differentiate between effects that are reproducible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach that facilitates this differentiation through the simultaneous learning of prediction tasks across cohorts. Since multi-cohort data can often not be combined into a single storage solution, there would be the substantial utility of an MTL application for geographically distributed data sources. RESULTS: Here, we describe the development of 'dsMTL', a computational framework for privacy-preserving, distributed multi-task machine learning that includes three supervised and one unsupervised algorithms. First, we derive the theoretical properties of these methods and the relevant machine learning workflows to ensure the validity of the software implementation. Second, we implement dsMTL as a library for the R programming language, building on the DataSHIELD platform that supports the federated analysis of sensitive individual-level data. Third, we demonstrate the applicability of dsMTL for comorbidity modeling in distributed data. We show that comorbidity modeling using dsMTL outperformed conventional, federated machine learning, as well as the aggregation of multiple models built on the distributed datasets individually. The application of dsMTL was computationally efficient and highly scalable when applied to moderate-size (n < 500), real expression data given the actual network latency. AVAILABILITY AND IMPLEMENTATION: dsMTL is freely available at https://github.com/transbioZI/dsMTLBase (server-side package) and https://github.com/transbioZI/dsMTLClient (client-side package). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Privacidade , Humanos , Software , Linguagens de Programação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA