RESUMO
In the present study, the silver nanoparticles (AgNPs) were synthesized from the bulbs of Allium sativum, characterized by UV-visible spectroscopy, FT-IR, SEM, HR-TEM, EDAX analysis and investigated its action on the inhibition of starch digestion. The results proved that the biosynthesized nanoparticles were uniformly dispersed, spherical shaped with the size ranging from 10 to 30 nm. The phytochemical and FT-IR analysis showed the presence of phenols, terpenoids, and amino acids in the synthesized AgNPs. The cytotoxicity analysis revealed that the synthesized AgNPs were non-toxic to the normal cells. The synthesized AgNPs exhibited significant free radical scavenging activity. The in vitro antidiabetic activity showed that the synthesized AgNPs increased glucose utilization, decreased hepatic glucose production, inhibited the activity of starch digestive enzymes such as α-amylase and α-glucosidase, and were not involved in the stimulation of pancreatic cells for the secretion of insulin. The in silico antidiabetic activity analysis (molecular docking) also revealed that the silver atoms of the AgNPs interacted with the amino acid residues of α-amylase, α-glucosidase, and insulin. The present study proved that the AgNPs synthesized from A. sativum have prominent antidiabetic activity in terms of reducing the hyperglycemia through the increased glucose utilization, decreased hepatic glucose production, and the inhibition of α-amylase and α-glucosidase enzymes. So it can be used as a promising nanomedicine for the treatment of diabetes.
Assuntos
Alho , Hipoglicemiantes , Insulinas , Nanopartículas Metálicas , Humanos , alfa-Glucosidases , Diabetes Mellitus/tratamento farmacológico , Alho/química , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Viruses are responsible for a variety of human pathogenesis. Owing to the enhancement of the world population, global travel, and rapid urbanization, and infectious outbreaks, a critical threat has been generated to public health, as preventive vaccines and antiviral therapy are not available. Herbal medicines and refined natural products have resources for the development of novel antiviral drugs. These natural agents have shed light on preventive vaccine development and antiviral therapies. This review intends to discuss the antiviral activities of plant extracts and some isolated plant natural products based on mainly preclinical (in vitro and in vivo) studies. Twenty medicinal herbs were selected for the discussion, and those are commonly recognized antiviral medicinal plants in Ayurveda (Zingiber officinale, Caesalpinia bonducella, Allium sativum, Glycyrrhiza glabra, Ferula assafoetida, Gymnema sylvestre, Gossypium herbaceum, Phyllanthus niruri, Trachyspermum ammi, Withania somnifera, Andrographis paniculata, Centella asiatica, Curcuma longa, Woodfordia fruticose, Phyllanthus emblica, Terminalia chebula, Tamarindus indica, Terminalia arjuna, Azadirachta indica, and Ficus religiosa). However, many viruses remain without successful immunization and only a few antiviral drugs have been approved for clinical use. Hence, the development of novel antiviral drugs is much significant and natural products are excellent sources for such drug developments. In this review, we summarize the antiviral actions of selected plant extracts and some isolated natural products of the medicinal herbs.