Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890458

RESUMO

Late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one of the most challenging diseases threatening tomato production and other Solanaceae crops. Resistance to late blight is found in certain wild species, but the mechanism behind the resistance is not fully understood. The aim of this study was to examine the metabolic profiles in the leaf tissue of late blight-resistant wild tomato and to investigate if leaf extracts from such genotypes could be used to control late blight in tomato production. We included three recognized late blight-resistant wild tomato accessions of Solanum habrochaites (LA1777, LA2855, and LA1352) and two recognized highly susceptible genotypes, S. lycopersicum ('Super Strain B') and S. pimpinellifolium (LA0375). The metabolic profiles were obtained in both inoculated and non-inoculated plants by analyzing leaf extracts using high-resolution gas chromatography-mass spectrometry (GC-MS) with three replicate analyses of each genotype. We focused on volatile organic compounds (VOCs) and identified 31 such compounds from the five genotypes with a retention time ranging from 6.6 to 22.8 min. The resistant genotype LA 1777 produced the highest number of VOCs (22 and 21 in the inoculated and control plants, respectively), whereas the susceptible genotype 'Super Strain B' produced the lowest number of VOCs (11 and 13 in the respective plants). Among the VOCs, 14 were detected only in the resistant genotypes, while two were detected only in the susceptible ones. In vitro trials, with the use of a detached leaflet assay and whole-plant approach, were conducted. We revealed promising insights regarding late blight management and showed that metabolic profiling may contribute to a better understanding of the mechanisms behind P. infestans resistance in tomato and its wild relatives.

2.
Plants (Basel) ; 11(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35567148

RESUMO

Cucumber production is considered a crucial problem under biotic and abiotic stress, particularly in arid and semi-arid zones. The current study investigated the impact of grafted cucumber plants on five cucurbit rootstocks under infection with Fusarium oxysporum f. sp. cucumerinum alone and in combination with heat stress in two different locations (i.e., Kafr El-Sheikh and Sidi Salem) during the year of 2021. The rootstock of VSS-61 F1 displayed the highest level of resistance with values 20.8 and 16.6% for wilt incidence and 79.2 and 83.4% for the wilt reduction, respectively for both locations. This rootstock showed the lowest disease severity of fusarium wilt (15.3 and 12%), and high grafting efficiency (85 and 88%), respectively in both locations. Grafting also improved plant vigor and cucumber production under heat stress (40-43 °C). The rootstocks VSS-61 F1, Ferro and Super Shintoza significantly increased the total yield of cucumber plants compared to non-grafted cucumber and the rootstock Bottle gourd in both locations. Further studies are needed on grafted plants under multiple stresses in terms of plant biological levels, including physiological, biochemical and genetic attributes.

3.
PLoS One ; 15(1): e0221604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961875

RESUMO

Phytophthora infestans (Mont.) de Bary, a hemibiotrophic oomycete, has caused severe epidemics of late blight in tomato and potato crops around the world since the Irish Potato Famine in the 1840s. Breeding of late blight resistant cultivars is one of the most effective strategies to overcome this disruptive disease. However, P. infestans is able to break down host resistance and acquire resistance to various fungicides, possibly because of the existence of high genetic variability among P. infestans isolates via sexual and asexual reproduction. Therefore, to manage this disease, it is important to understand the genetic divergence of P. infestans isolates. In this study, we analyzed the genomes of P. infestans isolates collected from Egypt and Japan using various molecular approaches including the mating type assay and genotyping simple sequence repeats, mitochondria DNA, and effector genes. We also analyzed genome-wide single nucleotide polymorphisms using double-digest restriction-site associated DNA sequencing and whole genome resequencing (WGRS). The isolates were classified adequately using high-resolution genome-wide approaches. Moreover, these analyses revealed new clusters of P. infestans isolates in the Egyptian population. Monitoring the genetic divergence of P. infestans isolates as well as breeding of resistant cultivars would facilitate the elimination of the late blight disease.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , DNA Mitocondrial/genética , Fungicidas Industriais/farmacologia , Genótipo , Solanum lycopersicum/microbiologia , Repetições de Microssatélites/genética , Phytophthora infestans/crescimento & desenvolvimento , Doenças das Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
4.
PLoS One ; 12(12): e0189951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253902

RESUMO

Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits.


Assuntos
Resistência à Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Phytophthora infestans , Doenças das Plantas/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Solanum lycopersicum/microbiologia , Repetições de Microssatélites , Mutação de Sentido Incorreto , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA