Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835622

RESUMO

The human akna gene encodes an AT-hook transcription factor, the expression of which is involved in various cellular processes. The goal of this study was to identify potential AKNA binding sites in genes that participate in T-cell activation and validate selected genes. Here we analyzed ChIP-seq and microarray assays to determine AKNA-binding motifs and the cellular process altered by AKNA in T-cell lymphocytes. In addition, we performed a validation analysis by RT-qPCR to assess AKNA's role in promoting IL-2 and CD80 expression. We found five AT-rich motifs that are potential candidates as AKNA response elements. We identified these AT-rich motifs in promoter regions of more than a thousand genes in activated T-cells, and demonstrated that AKNA induces the expression of genes involved in helper T-cell activation, such as IL-2. The genomic enrichment and prediction of AT-rich motif analyses demonstrated that AKNA is a transcription factor that can potentially modulate gene expression by recognizing AT-rich motifs in a plethora of genes that are involved in different molecular pathways and processes. Among the cellular processes activated by AT-rich genes, we found inflammatory pathways potentially regulated by AKNA, suggesting AKNA is acting as a master regulator during T-cell activation.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-2/metabolismo , Proteínas Nucleares/genética , Linfócitos T/metabolismo , Biologia Computacional
2.
Biomolecules ; 11(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34827707

RESUMO

Human akna encodes an AT-hook transcription factor whose expression participates in various cellular processes. We conducted a scoping review on the literature regarding the functional role of AKNA according to the evidence found in human and in vivo and in vitro models, stringently following the "PRISMA-ScR" statement recommendations. METHODS: We undertook an independent PubMed literature search using the following search terms, AKNA OR AKNA ADJ gene OR AKNA protein, human OR AKNA ADJ functions. Observational and experimental articles were considered. The selected studies were categorized using a pre-determined data extraction form. A narrative summary of the evidence was produced. RESULTS: AKNA modulates the expression of CD40 and CD40L genes in immune system cells. It is a negative regulator of inflammatory processes as evidenced by knockout mouse models and observational studies for several autoimmune and inflammatory diseases. Furthermore, AKNA contributes to the de-regulation of the immune system in cancer, and it has been proposed as a susceptibility genetic factor and biomarker in CC, GC, and HNSCC. Finally, AKNA regulates neurogenesis by destabilizing the microtubules dynamics. CONCLUSION: Our results provide evidence for the role of AKNA in various cellular processes, including immune response, inflammation, development, cancer, autoimmunity, and neurogenesis.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Predisposição Genética para Doença , Humanos , Inflamação , Regiões Promotoras Genéticas
3.
Infect Agent Cancer ; 7(1): 32, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23148667

RESUMO

BACKGROUND: Women with Human Papilloma Virus (HPV) persistence are characterized by high levels of IL-10 at cervix. We have determined whether polymorphisms of IL-10 gene promoter might be associated with increased risk of squamous intraepithelial cervical lesions (SICL) and whether exist significative differences of IL-10 mRNA expression at cervix and systemic and serum IL-10 protein between SICL cases and non-Cervical Lesions (NCL). METHODS: Peripheral blood samples from SICL (n = 204) and NCL (n = 166) were used to detect IL-10 promoter polymorphisms at loci -592A/C (rs1800872), -819C/T (rs1800871), -1082A/G (rs1800896), -1352A/G (rs1800893), by allelic discrimination and to evaluate serum IL-10 protein. Cervical epithelial scrapings from NCL and biopsies from SICLs were used for HPV-typing and to evaluate IL-10 mRNA expression level. The systemic and local IL-10 mRNA expression levels were measured by real time-PCR. Genotypic and allelic frequencies of the selected polymorphisms were analyzed by logistic regression, adjusting by age and HPV-genotype, to determine the association with SICL. RESULTS: No significant differences were found between genotype frequencies at loci -819, -1082, and -1352. Individuals carrying at least one copy of risk allele A of polymorphism -592 had a two-fold increased risk of developing SICL [adjusted odds ratio (OR), 2.02 (95% CI, 1.26-3.25), p = 0.003], compared to NCL. The IL-10 mRNA expression and serum IL-10 protein, were significantly higher in SICL cases (p < 0.01), being higher in patients carrying the risk allele A. CONCLUSIONS: The -592 polymorphism is associated with increased risk of SICL and can serve as a marker of genetic susceptibility to SICL among Mexican women. According to IL-10 levels found in SICL, IL-10 can be relevant factor for viral persistence and progression disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA