Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 110(4): e16159, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943007

RESUMO

PREMISE: The possibility of fine-scale intraspecific adaptive divergence under gene flow is established by theoretical models and has been confirmed empirically in tree populations distributed along steep altitudinal clines or across extreme edaphic discontinuities. However, the possibility of microgeographic adaptive divergence due to less severe but more frequent kinds of soil variation is unclear. METHODS: In this study, we looked for evidence of local adaptation to calcareous versus siliceous soil types in two nearby Mediterranean Pinus sylvestris populations connected via pollen flow. Using a greenhouse experiment, we tested for variation in early (up to three years of age) seedling performance among open-pollinated maternal families originating from each edaphic provenance when experimentally grown on both types of natural local substrate. RESULTS: Although seedlings were clearly affected by the edaphic environment, exhibiting lower and slower emergence as well as higher mortality on the calcareous than in the siliceous substrate, neither the performance on each substrate nor the plasticity among substrates varied significantly with seedling edaphic provenance. CONCLUSIONS: We found no evidence of local adaptation to a non-extreme edaphic discontinuity over a small spatial scale, at least during early stages of seedling establishment. Future studies on microgeographic soil-driven adaptation should consider long-term experiments to minimize maternal effects and allow a potentially delayed expression of edaphic adaptive divergence.


Assuntos
Pinus sylvestris , Pinus , Solo , Pinus sylvestris/genética , Fenótipo , Adaptação Fisiológica , Aclimatação , Plântula/genética , Pinus/genética
2.
Mol Ecol ; 27(9): 2176-2192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577469

RESUMO

The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.


Assuntos
Deriva Genética , Quercus/genética , Água/metabolismo , Mudança Climática , Secas , Estudos de Associação Genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Quercus/anatomia & histologia , Quercus/metabolismo , Estações do Ano , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo , Seleção Genética
3.
AoB Plants ; 12(3): plaa019, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32665825

RESUMO

Given that the ecological niche of tree species is typically narrower for earlier life stages, intraspecific genetic variation at early fitness traits may greatly influence the adaptive response of tree populations to changing environmental conditions. In this study, we evaluated genetic variation in early fitness traits among 12 populations of Betula pendula from a wide latitudinal range in Europe (41-55°N). We first conducted a chamber experiment to test for population differences in germination and the effect of pre-chilling treatment on seed dormancy release. We then established three common gardens spread across the species latitudinal range in order to evaluate levels of quantitative genetic variation and genotype-by-environment interaction at different early life traits. Our results showed significant variation in chamber germination rates among populations (0-60 %), with southern populations exhibiting lower germination. Pre-chilling treatments did not generally improve germination success. Population seedling emergence rates in the field were correlated with chamber germination rates, though being an order of magnitude lower, with an average ranging from 0 to 1.3 % across gardens. Highly significant variation was found in field emergence rates among populations, and between seed-crop years within populations, but not among families within populations. Populations differed in seedling height, diameter, slenderness and budburst date, with significant among-family variation. Population latitude was positively associated with chamber germination rate and with seedling emergence rate in one of the central field sites. Overall, genetic, environmental and demographic factors seem to influence the observed high levels of variation in early fitness traits among B. pendula populations. Our results suggest limited regeneration capacity for the study species under drier conditions, but further field trials with sufficient replication over environments and seed crops will improve our understanding of its vulnerability to climate change.

4.
Tree Physiol ; 39(3): 427-439, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321394

RESUMO

Heritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect. for a suite of traits related to resource use and drought resistance. We tested whether quantitative genetic variation differed across traits, populations and watering treatments. We also tested potential evolutionary factors that might have shaped such a pattern: selection by climate and genetic drift. We measured 15 functional traits on 1322 1-year-old seedlings of 84 maternal half-sib families originating from five populations growing under two watering treatments in a greenhouse. We estimated the additive genetic variance, coefficient of additive genetic variation and narrow-sense heritability for each combination of traits, populations and treatments. In addition, we genotyped a total of 119 individuals (with at least 20 individuals per population) using nuclear microsatellites to estimate genetic diversity and population genetic structure. Our results showed that gas exchange traits and growth exhibited strikingly high quantitative genetic variation compared with traits related to leaf morphology, anatomy and photochemistry. Quantitative genetic variation differed between populations even at geographical scales as small as a few kilometers. Climate was associated with quantitative genetic variation, but only weakly. Genetic structure and diversity in neutral markers did not relate to coefficient of additive genetic variation. Our study demonstrates that quantitative genetic variation is not homogeneous across traits and populations of Q. oleoides. More importantly, our findings suggest that predictions about potential responses of species to climate change need to consider population-specific evolutionary characteristics.


Assuntos
Evolução Biológica , Secas , Variação Genética , Características de História de Vida , Quercus/fisiologia , Mudança Climática , Genótipo , Fenótipo , Quercus/genética , Quercus/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
5.
Tree Physiol ; 37(7): 889-901, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419347

RESUMO

In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not necessarily tightly coupled with resource-use strategies. Overall, our study demonstrates the importance of considering intraspecific variation in analyses of the vulnerability of tropical trees to climate change.


Assuntos
Secas , Quercus/fisiologia , Chuva , Clima Tropical , América Central , Mudança Climática , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia , Água
6.
Front Plant Sci ; 8: 585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536582

RESUMO

Widely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions. In fact, studies of intraspecific genetically-based differences in functional traits are still largely unknown and studies in these ecosystems have largely focused on in situ comparisons where environmental and genetic effects cannot be differentiated. In this study, we tested for ecotypic differentiation and phenotypic plasticity in leaf economics spectrum (LES) traits, water use efficiency and growth rates under natural and manipulated precipitation regimes in a common garden experiment where seedlings of eight populations of the neotropical live oak Quercus oleoides were established. We also examined the extent to which intraspecific trait variation was associated with plant performance under different water availability. Similar to interspecific patterns among seasonally-dry tropical tree species, live oak populations with long and severe dry seasons had higher leaf nitrogen content and growth rates than mesic populations, which is consistent with a "fast" resource-acquisition strategy aimed to maximize carbon uptake during the wet season. Specific leaf area (SLA) was the best predictor of plant performance, but contrary to expectations, it was negatively associated with relative and absolute growth rates. This observation was partially explained by the negative association between SLA and area-based photosynthetic rates, which is contrary to LES expectations but similar to other recent intraspecific studies on evergreen oaks. Overall, our study shows strong intraspecific differences in functional traits in a tropical oak, Quercus oleoides, and suggests that precipitation regime has played an important role in driving adaptive divergence in this widespread species.

7.
Tree Physiol ; 35(5): 521-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25939867

RESUMO

Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. In this study, our goal was to determine how photoprotective mechanisms, morphological traits and their plasticity have evolved in live oaks (Quercus series Virentes) in response to different climatic conditions. For this purpose, seedlings originating from 11 populations from four live oak species (Quercus virginiana, Q. geminata, Q. fusiformis and Q. oleoides) were grown under contrasting common environmental conditions of temperature (tropical vs temperate) and water availability (droughted vs well-watered). Xanthophyll cycle pigments, anthocyanin accumulation, chlorophyll fluorescence parameters and leaf anatomical traits were measured. Seedlings originating from more mesic source populations of Q. oleoides and Q. fusiformis increased the xanthophyll de-epoxidation state under water-limiting conditions and showed higher phenotypic plasticity for this trait, suggesting adaptation to local climate. Likewise, seedlings originating from warmer climates had higher anthocyanin concentration in leaves under cold winter conditions but not higher de-epoxidation state. Overall, our findings suggest that (i) climate has been a key factor in shaping species and population differences in stress tolerance for live oaks, (ii) anthocyanins are used under cold stress in species with limited freezing tolerance and (iii) xanthophyll cycle pigments are used when photoprotection under drought conditions is needed.


Assuntos
Temperatura Baixa , Secas , Pigmentos Biológicos/metabolismo , Folhas de Planta/fisiologia , Quercus/fisiologia , Adaptação Fisiológica , Antocianinas/metabolismo , América Central , Clorofila/metabolismo , Mudança Climática , Variação Genética , América do Norte , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Quercus/genética , Especificidade da Espécie , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA