Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 49(D1): D1058-D1064, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33170210

RESUMO

The Zebrafish Information Network (ZFIN) (https://zfin.org/) is the database for the model organism, zebrafish (Danio rerio). ZFIN expertly curates, organizes, and provides a wide array of zebrafish genetic and genomic data, including genes, alleles, transgenic lines, gene expression, gene function, mutant phenotypes, orthology, human disease models, gene and mutant nomenclature, and reagents. New features at ZFIN include major updates to the home page and the gene page, the two most used pages at ZFIN. Data including disease models, phenotypes, expression, mutants and gene function continue to be contributed to The Alliance of Genome Resources for integration with similar data from other model organisms.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma/genética , Genômica/métodos , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Mineração de Dados/métodos , Expressão Gênica , Humanos , Internet , Modelos Animais , Mutação , Fenótipo , Proteínas de Peixe-Zebra/genética
2.
Nucleic Acids Res ; 47(D1): D867-D873, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407545

RESUMO

The Zebrafish Information Network (ZFIN) (https://zfin.org/) is the database for the model organism, zebrafish (Danio rerio). ZFIN expertly curates, organizes and provides a wide array of zebrafish genetic and genomic data, including genes, alleles, transgenic lines, gene expression, gene function, mutant phenotypes, orthology, human disease models, nomenclature and reagents. New features at ZFIN include increased support for genomic regions and for non-coding genes, and support for more expressive Gene Ontology annotations. ZFIN has recently taken over maintenance of the zebrafish reference genome sequence as part of the Genome Reference Consortium. ZFIN is also a founding member of the Alliance of Genome Resources, a collaboration of six model organism databases (MODs) and the Gene Ontology Consortium (GO). The recently launched Alliance portal (https://alliancegenome.org) provides a unified, comparative view of MOD, GO, and human data, and facilitates foundational and translational biomedical research.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Peixe-Zebra/genética , Animais , Expressão Gênica/genética , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Mutação/genética , Fenótipo
3.
Nucleic Acids Res ; 45(D1): D758-D768, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899582

RESUMO

The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, 'Fish' records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search.


Assuntos
Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Genômica/métodos , Ferramenta de Busca , Peixe-Zebra/genética , Animais , Biologia Computacional/métodos , Curadoria de Dados , Modelos Animais de Doenças , Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Fenótipo
4.
Genesis ; 53(8): 498-509, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26097180

RESUMO

The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for genetic and genomic data from zebrafish (Danio rerio) research. ZFIN staff curate detailed information about genes, mutants, genotypes, reporter lines, sequences, constructs, antibodies, knockdown reagents, expression patterns, phenotypes, gene product function, and orthology from publications. Researchers can submit mutant, transgenic, expression, and phenotype data directly to ZFIN and use the ZFIN Community Wiki to share antibody and protocol information. Data can be accessed through topic-specific searches, a new site-wide search, and the data-mining resource ZebrafishMine (http://zebrafishmine.org). Data download and web service options are also available. ZFIN collaborates with major bioinformatics organizations to verify and integrate genomic sequence data, provide nomenclature support, establish reciprocal links, and participate in the development of standardized structured vocabularies (ontologies) used for data annotation and searching. ZFIN-curated gene, function, expression, and phenotype data are available for comparative exploration at several multi-species resources. The use of zebrafish as a model for human disease is increasing. ZFIN is supporting this growing area with three major projects: adding easy access to computed orthology data from gene pages, curating details of the gene expression pattern changes in mutant fish, and curating zebrafish models of human diseases.


Assuntos
Bases de Dados Genéticas , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Biologia Computacional/métodos , Curadoria de Dados/métodos , Estudos de Associação Genética , Genômica/métodos , Internet , Modelos Animais
5.
Nucleic Acids Res ; 41(Database issue): D854-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23074187

RESUMO

ZFIN, the Zebrafish Model Organism Database (http://zfin.org), is the central resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN curators manually curate and integrate comprehensive data involving zebrafish genes, mutants, transgenics, phenotypes, genotypes, gene expressions, morpholinos, antibodies, anatomical structures and publications. Integrated views of these data, as well as data gathered through collaborations and data exchanges, are provided through a wide selection of web-based search forms. Among the vertebrate model organisms, zebrafish are uniquely well suited for rapid and targeted generation of mutant lines. The recent rapid production of mutants and transgenic zebrafish is making management of data associated with these resources particularly important to the research community. Here, we describe recent enhancements to ZFIN aimed at improving our support for mutant and transgenic lines, including (i) enhanced mutant/transgenic search functionality; (ii) more expressive phenotype curation methods; (iii) new downloads files and archival data access; (iv) incorporation of new data loads from laboratories undertaking large-scale generation of mutant or transgenic lines and (v) new GBrowse tracks for transgenic insertions, genes with antibodies and morpholinos.


Assuntos
Bases de Dados Genéticas , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Genômica , Internet , Modelos Animais , Mutação , Fenótipo
6.
Nucleic Acids Res ; 39(Database issue): D822-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21036866

RESUMO

ZFIN, the Zebrafish Model Organism Database, http://zfin.org, serves as the central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN manually curates comprehensive data for zebrafish genes, phenotypes, genotypes, gene expression, antibodies, anatomical structures and publications. A wide-ranging collection of web-based search forms and tools facilitates access to integrated views of these data promoting analysis and scientific discovery. Data represented in ZFIN are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations. ZFIN is a dynamic resource with data added daily as part of our ongoing curation process. Software updates are frequent. Here, we describe recent additions to ZFIN including (i) enhanced access to images, (ii) genomic features, (iii) genome browser, (iv) transcripts, (v) antibodies and (vi) a community wiki for protocols and antibodies.


Assuntos
Bases de Dados Genéticas , Peixe-Zebra/genética , Animais , Anticorpos , Expressão Gênica , Genômica , Modelos Animais , Fenótipo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
7.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864549

RESUMO

Danio rerio is a model organism used to investigate vertebrate development. Manipulation of the zebrafish genome and resultant gene products by mutation or targeted knockdown has made the zebrafish a good system for investigating gene function, providing a resource to investigate genetic contributors to phenotype and human disease. Phenotypic outcomes can be the result of gene mutation, targeted knockdown of gene products, manipulation of experimental conditions, or any combination thereof. Zebrafish have been used in various genetic and chemical screens to identify genetic and environmental contributors to phenotype and disease outcomes. The Zebrafish Information Network (ZFIN, zfin.org) is the central repository for genetic, genomic, and phenotypic data that result from research using D. rerio. Here we describe how ZFIN annotates phenotype, expression, and disease model data across various experimental designs, how we computationally determine wild-type gene expression, the phenotypic gene, and how these results allow us to propagate gene expression, phenotype, and disease model data to the correct gene, or gene related entity.


Assuntos
Genoma , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Genômica/métodos , Fenótipo , Expressão Gênica
8.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166825

RESUMO

The Zebrafish Information Network (zfin.org) is the central repository for Danio rerio genetic and genomic data. The Zebrafish Information Network has served the zebrafish research community since 1994, expertly curating, integrating, and displaying zebrafish data. Key data types available at the Zebrafish Information Network include, but are not limited to, genes, alleles, human disease models, gene expression, phenotype, and gene function. The Zebrafish Information Network makes zebrafish research data Findable, Accessible, Interoperable, and Reusable through nomenclature, curatorial and annotation activities, web interfaces, and data downloads. Recently, the Zebrafish Information Network and 6 other model organism knowledgebases have collaborated to form the Alliance of Genome Resources, aiming to develop sustainable genome information resources that enable the use of model organisms to understand the genetic and genomic basis of human biology and disease. Here, we provide an overview of the data available at the Zebrafish Information Network including recent updates to the gene page to provide access to single-cell RNA sequencing data, links to Alliance web pages, ribbon diagrams to summarize the biological systems and Gene Ontology terms that have annotations, and data integration with the Alliance of Genome Resources.


Assuntos
Bases de Dados Genéticas , Peixe-Zebra , Animais , Ontologia Genética , Genoma , Genômica , Peixe-Zebra/genética
9.
Nucleic Acids Res ; 36(Database issue): D768-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17991680

RESUMO

The Zebrafish Information Network (ZFIN, http://zfin.org), the model organism database for zebrafish, provides the central location for curated zebrafish genetic, genomic and developmental data. Extensive data integration of mutant phenotypes, genes, expression patterns, sequences, genetic markers, morpholinos, map positions, publications and community resources facilitates the use of the zebrafish as a model for studying gene function, development, behavior and disease. Access to ZFIN data is provided via web-based query forms and through bulk data files. ZFIN is the definitive source for zebrafish gene and allele nomenclature, the zebrafish anatomical ontology (AO) and for zebrafish gene ontology (GO) annotations. ZFIN plays an active role in the development of cross-species ontologies such as the phenotypic quality ontology (PATO) and the gene ontology (GO). Recent enhancements to ZFIN include (i) a new home page and navigation bar, (ii) expanded support for genotypes and phenotypes, (iii) comprehensive phenotype annotations based on anatomical, phenotypic quality and gene ontologies, (iv) a BLAST server tightly integrated with the ZFIN database via ZFIN-specific datasets, (v) a global site search and (vi) help with hands-on resources.


Assuntos
Bases de Dados Genéticas , Fenótipo , Peixe-Zebra/genética , Animais , Genótipo , Internet , Modelos Animais , Mutação , Alinhamento de Sequência , Integração de Sistemas , Interface Usuário-Computador , Peixe-Zebra/anatomia & histologia
10.
Nucleic Acids Res ; 34(Database issue): D581-5, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381936

RESUMO

The Zebrafish Information Network (ZFIN; http://zfin.org) is a web based community resource that implements the curation of zebrafish genetic, genomic and developmental data. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community resources such as meeting announcements and contact information. Recent enhancements to ZFIN include (i) comprehensive curation of gene expression data from the literature and from directly submitted data, (ii) increased support and annotation of the genome sequence, (iii) expanded use of ontologies to support curation and query forms, (iv) curation of morpholino data from the literature, and (v) increased versatility of gene pages, with new data types, links and analysis tools.


Assuntos
Bases de Dados Genéticas , Peixe-Zebra/genética , Animais , Expressão Gênica , Genômica , Internet , Modelos Animais , Oligonucleotídeos Antissenso/química , Integração de Sistemas , Interface Usuário-Computador , Vocabulário Controlado , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Methods Mol Biol ; 1757: 307-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761463

RESUMO

The Zebrafish Model Organism Database (ZFIN; zfin.org) was established in 1994 as the primary genetic and genomic resource for the zebrafish research community. Some of the earliest records in ZFIN were for people and laboratories. Since that time, services and data types provided by ZFIN have grown considerably. Today, ZFIN provides the official nomenclature for zebrafish genes, mutants, and transgenics and curates many data types including gene expression, phenotypes, Gene Ontology, models of human disease, orthology, knockdown reagents, transgenic constructs, and antibodies. Ontologies are used throughout ZFIN to structure these expertly curated data. An integrated genome browser provides genomic context for genes, transgenics, mutants, and knockdown reagents. ZFIN also supports a community wiki where the research community can post new antibody records and research protocols. Data in ZFIN are accessible via web pages, download files, and the ZebrafishMine (zebrafishmine.org), an installation of the InterMine data warehousing software. Searching for data at ZFIN utilizes both parameterized search forms and a single box search for searching or browsing data quickly. This chapter aims to describe the primary ZFIN data and services, and provide insight into how to use and interpret ZFIN searches, data, and web pages.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica , Peixe-Zebra/genética , Animais , Ontologia Genética , Genes , Genômica/métodos , Genótipo , Pseudogenes , Análise de Sequência de DNA , Software , Interface Usuário-Computador , Navegador
12.
ILAR J ; 58(1): 4-16, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28838067

RESUMO

The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.


Assuntos
Bases de Dados Genéticas , Modelos Animais de Doenças , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Biologia Computacional/métodos , Curadoria de Dados/métodos , Estudos de Associação Genética , Genoma , Genômica , Humanos , Modelos Animais , Mutação
13.
J Adv Pharm Technol Res ; 6(4): 170-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605158

RESUMO

Staphylococcus aureus is a common nosocomial pathogen with property to develop resistance to antimicrobial agents. But in the modern era, drug resistance had been developed by microbes due to its continuous usage of antibiotics. This study was carried out to evaluate antibiotic resistant pattern of methicillin resistant Staphylococcus aureus (MRSA) using molecular genotyping. In view of the present problem, the study has been conducted to detect the molecular genotyping of mecA gene from MRSA and confirmation of its restriction sites using EcoRI and BamHI. The pus samples were swabbed out, and clinical strains were isolated using standard microbiological procedures. Then the strains were subjected to in vitro antibiotic susceptibility assay and identified MRSA. Further molecular genotyping of mecA gene was determined by polymerase chain reaction technique. The percentage analysis was done. The clinical strains were isolated from the wound infected patients. A total of 60 samples were collected, of 60 samples, 40 (66.7%) were showed positive to strains of S. aureus. The in vitro antibiotic susceptibility assay was carried to find the drug sensitive and resistant patterns. Further methicillin resistant strains (35%) of S. aureus were screened and subjected to molecular genotyping of mecA gene and was confirmed by restriction digestion. Overall, 70% of plasmids show positive for the presence of mecA gene, although all strains have restriction sites. Hence, the present study revealed that the early detection of antibiotic resistant character using molecular genotyping will help the infected patient to cure short period and will reduce the development of multidrug resistance.

14.
Methods Cell Biol ; 104: 311-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21924170

RESUMO

The publication of a research article is the beginning of the digital life of its associated data. In this article, we will present an overview of how data are incorporated into ZFIN, with a particular emphasis on helping researchers make their work accessible to online databases.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas/normas , Disseminação de Informação/métodos , Peixe-Zebra/genética , Animais , Gestão da Informação/métodos , Gestão da Informação/normas , Terminologia como Assunto
15.
Curr Protoc Bioinformatics ; Chapter 1: Unit 1.18, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20836073

RESUMO

The zebrafish model organism database (ZFIN) provides a Web resource of zebrafish genomic, genetic, developmental, and phenotypic data. ZFIN curates and integrates data from current literature and from direct data submissions from laboratories. In addition, ZFIN collaborates with other bioinformatics organizations to provide links to other relevant data. These data can be accessed through a variety of Web-based search and display tools. This unit focuses on some of the basic methods to search, visualize, and analyze ZFIN data, including genes, gene expression, mutants, morphants, transgenics, anatomical structures, and antibodies. ZFIN's GBrowse genome viewer, BLAST, and protocol and antibody wikis are also discussed.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genoma , Peixe-Zebra/genética , Animais , Fenótipo
16.
Genome Res ; 13(6B): 1505-19, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12819150

RESUMO

The Mouse Genome Sequencing Consortium and the RIKEN Genome Exploration Research grouphave generated large sets of sequence data representing the mouse genome and transcriptome, respectively. These data provide a valuable foundation for genomic research. The challenges for the informatics community are how to integrate these data with the ever-expanding knowledge about the roles of genes and gene products in biological processes, and how to provide useful views to the scientific community. Public resources, such as the National Center for Biotechnology Information (NCBI; http://www.ncbi.nih.gov), and model organism databases, such as the Mouse Genome Informatics database (MGI; http://www.informatics.jax.org), maintain the primary data and provide connections between sequence and biology. In this paper, we describe how the partnership of MGI and NCBI LocusLink contributes to the integration of sequence and biology, especially in the context of the large-scale genome and transcriptome data now available for the laboratory mouse. In particular, we describe the methods and results of integration of 60,770 FANTOM2 mouse cDNAs with gene records in the databases of MGI and LocusLink.


Assuntos
Sequência de Bases/genética , Biologia Computacional/métodos , Animais , Sequência de Bases/fisiologia , Biologia Computacional/estatística & dados numéricos , Gráficos por Computador/estatística & dados numéricos , Gráficos por Computador/tendências , DNA Complementar/genética , DNA Complementar/fisiologia , Bases de Dados Genéticas/estatística & dados numéricos , Bases de Dados Genéticas/tendências , Genes/genética , Genes/fisiologia , Genoma , Internet/estatística & dados numéricos , Internet/tendências , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA