Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 58(7): 484-494, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820034

RESUMO

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.


Assuntos
Cérebro/metabolismo , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Mutação com Perda de Função , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Proteínas Repressoras/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano , Células Cultivadas , Regulação para Baixo , Feminino , Receptor 1 de Folato/deficiência , Deficiência de Ácido Fólico/genética , Células HEK293 , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Distrofias Neuroaxonais , Linhagem , Análise de Sequência de DNA
2.
Genet Med ; 21(9): 2025-2035, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723320

RESUMO

PURPOSE: Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. METHODS: Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. RESULTS: We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. CONCLUSION: In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome.


Assuntos
Alopecia/genética , Colesterol/metabolismo , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Transferases Intramoleculares/genética , Idade de Início , Alopecia/complicações , Alopecia/patologia , Criança , Pré-Escolar , Colesterol/genética , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Epilepsia/complicações , Epilepsia/genética , Epilepsia/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Lanosterol/genética , Lanosterol/metabolismo , Masculino , Mutação , Linhagem , Fenótipo , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Sequenciamento do Exoma
3.
Am J Hum Genet ; 97(6): 886-93, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637978

RESUMO

Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development.


Assuntos
Proteínas de Transporte de Cátions/genética , Doenças Cerebelares/genética , Nanismo/genética , Genes Recessivos , Deficiência Intelectual/genética , Manganês/sangue , Zinco/sangue , Adolescente , Proteínas de Transporte de Cátions/metabolismo , Cátions Bivalentes , Doenças Cerebelares/sangue , Doenças Cerebelares/complicações , Doenças Cerebelares/etnologia , Criança , Nanismo/sangue , Nanismo/complicações , Nanismo/etnologia , Etnicidade , Exoma , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/complicações , Deficiência Intelectual/etnologia , Transporte de Íons , Masculino , Manganês/urina , População Branca , Adulto Jovem , Zinco/urina
4.
Clin Chem Lab Med ; 51(3): 497-511, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23314536

RESUMO

We characterized cerebral folate deficiency (CFD) as any neuro-psychiatric condition associated with low spinal fluid (CSF) N5-methyltetrahydrofolate (MTHF) but normal folate status outside the central nervous system (CNS). The commonest cause underlying CFD syndromes is the presence of serum autoantibodies of the blocking type directed against folate receptor-α (FRα) attached to the plasma-side of choroid plexus epithelial cells. Blocking FR antibodies inhibit MTHF transport across the choroid plexus. Serum titers of FR antibodies may fluctuate significantly over time. Less frequent causes of CFD are FOLR-1 mutations, mitochondrial disorders and inborn errors affecting folate metabolism. Maternal FR antibodies have been associated with neural tube defects while the presence of FR antibodies in either one or both parents increases the risk of an offspring with infantile autism. Recognizable CFD syndromes attributed to FR-antibodies in childhood are infantile-onset CFD presenting 4-6 months after birth, infantile autism with neurological deficits, and a spastic ataxic syndrome from the age of 1 year, while progressive dystonic or schizophrenic syndromes develop during adolescence. FR autoantibodies are frequently found in autism spectrum disorders, in an Aicardi-Goutières variant and in Rett syndrome. The heterogeneous phenotype of CFD syndromes might be determined by different ages of onset and periods when FR autoantibodies are generated with consequent CNS folate deficiency. Folate deficiency during various critical stages of fetal and infantile development affects structural and functional refinement of the brain. Awareness of CFD syndromes should lead to early detection, diagnosis and improved prognosis of these potentially treatable group of autoimmune and genetically determined conditions.


Assuntos
Deficiência de Ácido Fólico/diagnóstico , Autoanticorpos/sangue , Autoanticorpos/imunologia , Receptor 1 de Folato/genética , Receptor 1 de Folato/imunologia , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/tratamento farmacológico , Deficiência de Ácido Fólico/patologia , Humanos , Leucovorina/uso terapêutico , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação
5.
Clin Chem Lab Med ; 51(3): 545-54, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23314538

RESUMO

Folate supplementation reduces the risk of neural tube defect (NTD) pregnancy, and folinic acid has been used to correct cerebral folate deficiency (CFD) in children with developmental disorders. In the absence of systemic folate deficiency, the discovery of autoantibodies (AuAbs) to folate receptor α (FRα) that block the uptake of folate offers one mechanism to explain the response to folate in these disorders. The association of FRα AuAbs with pregnancy-related complications, CFD syndrome, and autism spectrum disorders and response to folate therapy is highly suggestive of the involvement of these AuAbs in the disruption of brain development and function via folate pathways. The two types of antibodies identified in the serum of patients are blocking antibody and binding antibody. The two antibodies can be measured by the specific assays described and exert their pathological effects either by functional blocking of folate transport as previously shown or hypothetically by disrupting the FR by an antigen-antibody-mediated inflammatory response. We have identified both IgG and IgM AuAbs in these conditions. The predominant antibodies in women with NTD pregnancy belong to the IgG1 and IgG2 isotype and in CFD children, the IgG1 and IgG4 isotype. This review describes the methods used to measure these AuAbs, their binding characteristics, affinity, cross-reactivity, and potential mechanisms by which folate therapy could work. Because these AuAbs are associated with various pathologies during fetal and neonatal development, early detection and intervention could prevent or reverse the consequences of exposure to these AuAbs.


Assuntos
Autoanticorpos/sangue , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Receptor 1 de Folato/imunologia , Deficiência de Ácido Fólico/diagnóstico , Defeitos do Tubo Neural/diagnóstico , Anticorpos Bloqueadores/sangue , Anticorpos Bloqueadores/efeitos dos fármacos , Afinidade de Anticorpos/efeitos dos fármacos , Autoanticorpos/imunologia , Criança , Transtornos Globais do Desenvolvimento Infantil/sangue , Transtornos Globais do Desenvolvimento Infantil/imunologia , Feminino , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacologia , Deficiência de Ácido Fólico/sangue , Deficiência de Ácido Fólico/imunologia , Humanos , Imunoglobulina G/sangue , Isotipos de Imunoglobulinas/sangue , Defeitos do Tubo Neural/sangue , Defeitos do Tubo Neural/imunologia , Gravidez
6.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648066

RESUMO

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Neuroesteroides , Canais de Cátion TRPM , Animais , Humanos , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Canais Iônicos/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Mamíferos/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(14): 5842-7, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19289823

RESUMO

We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2-23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K(+) channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K(+) channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K(+) released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K(+) recycling across the basolateral membrane to enable normal activity of the Na(+)-K(+)-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10's role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K(+) channels in renal electrolyte homeostasis.


Assuntos
Anormalidades Múltiplas/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Anormalidades Múltiplas/etiologia , Animais , Ataxia , Cromossomos Humanos Par 1 , Perda Auditiva Neurossensorial/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Convulsões/genética , Síndrome , Distribuição Tecidual , Equilíbrio Hidroeletrolítico/genética
8.
Nutrients ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956272

RESUMO

Cerebral folate deficiency syndrome (CFDS) is defined as any neuropsychiatric or developmental disorder characterized by decreased CSF folate levels in the presence of normal folate status outside the nervous system. The specific clinical profile appears to be largely determined by the presence or absence of intrauterine folate deficiency as well as postnatal age at which cerebral folate deficiency occurs. The primary cause of CFDS is identified as the presence of serum folate receptor-alpha (FRα) autoantibodies impairing folate transport across the choroid plexus to the brain whereas, in a minority of cases, mitochondrial disorders, inborn errors of metabolism and loss of function mutations of the FRα (FOLR1) gene are identified. Early recognition and diagnosis of CFDS and prompt intervention is important to improve prognosis with successful outcomes. In this article we focus on FRα autoimmunity and its different age-dependent clinical syndromes, the diagnostic criteria, and treatments to be considered, including prevention strategies in this at-risk population.


Assuntos
Deficiência de Ácido Fólico , Ácido Fólico , Diagnóstico Precoce , Receptor 1 de Folato/deficiência , Receptor 1 de Folato/genética , Receptor 1 de Folato/uso terapêutico , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/metabolismo , Humanos , Distrofias Neuroaxonais , Síndrome
9.
Biology (Basel) ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36671766

RESUMO

(1) Background: The genetic etiology of most patients with cerebral folate deficiency (CFD) remains poorly understood. KDM6B variants were reported to cause neurodevelopmental diseases; however, the association between KDM6B and CFD is unknown; (2) Methods: Exome sequencing (ES) was performed on 48 isolated CFD cases. The effect of KDM6B variants on KDM6B protein expression, Histone H3 lysine 27 epigenetic modification and FOLR1 expression were examined in vitro. For each patient, serum FOLR1 autoantibodies were measured; (3) Results: Six KDM6B variants were identified in five CFD patients, which accounts for 10% of our CFD cohort cases. Functional experiments indicated that these KDM6B variants decreased the amount of KDM6B protein, which resulted in elevated H3K27me2, lower H3K27Ac and decreased FOLR1 protein concentrations. In addition, FOLR1 autoantibodies have been identified in serum; (4) Conclusion: Our study raises the possibility that KDM6B may be a novel CFD candidate gene in humans. Variants in KDM6B could downregulate FOLR1 gene expression, and might also predispose carriers to the development of FOLR1 autoantibodies.

10.
Mol Genet Metab ; 102(3): 368-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183371

RESUMO

The known Gly56Ala mutation in the serotonin transporter SERT (or 5-HTT), encoded by the SLC6A4 gene, causes increased serotonin reuptake and has been associated with autism and rigid-compulsive behavior. We report a patient with macrocephaly from birth, followed by hypotonia, developmental delay, ataxia and a diagnosis of atypical autism (PDD-NOS) in retrospect at the age of 4½years. Low levels of the serotonin end-metabolite 5-hydroxyindolacetic acid (5HIAA) in CSF were detected, and SLC6A4 gene analysis revealed the heterozygous Gly56Ala alteration and the homozygous 5-HTTLPR L/L promoter variant. These changes are reported to be responsible for elevated SERT activity and expression, suggesting that these alterations were responsible in our patient for low serotonin turnover in the central nervous system (CNS). Daily treatment with 5-hydroxytryptophan (and carbidopa) led to clinical improvement and normalization of 5HIAA, implying that brain serotonin turnover normalized. We speculate that the mutated 56Ala SERT transporter with elevated expression and basal activity for serotonin re-uptake is accompanied with serotonin accumulation within pre-synaptic axons and their vesicles in the CNS, resulting in a steady-state of lowered serotonin turnover and degradation by monoamine-oxidase (MAO) enzymes in pre-synaptic or neighboring cells.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Regiões Promotoras Genéticas/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , 5-Hidroxitriptofano/uso terapêutico , Substituição de Aminoácidos , Antidepressivos de Segunda Geração/uso terapêutico , Transtorno Autístico/tratamento farmacológico , Pré-Escolar , Genótipo , Humanos , Masculino , Mutação , Polimorfismo Genético , Serotonina/metabolismo , Resultado do Tratamento
11.
J Pers Med ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34442354

RESUMO

Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb's association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.

12.
Mol Genet Metab ; 101(1): 48-54, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20619709

RESUMO

Metabolic breakdown of valproate (VPA), carbamazepine (CBZ) and phenytoin (PHT) by the cytochrome P450 pathway generates toxic drug intermediates and reactive oxygen species (ROS). This mechanism has been suspected to play a role in the pathogenesis of secondary cerebral folate deficiency (CFD). Using KB-cell cultures, highly expressing the folate receptor 1 (FOLR1), the effect of antiepileptic drugs (AEDs) and reactive oxygen species (ROS) on the FOLR1 dependent 5-methyltetrahydrofolate (MTHF) uptake was studied. MTHF uptake is time and concentration dependent and shows saturation kinetics. At physiological MTHF concentrations the high-affinity FOLR1 represents the predominant mechanism for cellular incorporation, while at high MTHF concentrations other transport mechanisms participate in folate uptake. Exposure to PHT for more than 8h led to a higher MTHF uptake and decreased cell count, whereas MTHF uptake remained unaltered by VPA and CBZ. However, exposure to superoxide and hydrogen peroxide radicals significantly decreased cellular MTHF uptake. By specific elimination and downregulation of FOLR1 using phosphatidyl-inositol-specific phospholipase C (PIPLC) and siRNA silencing, it was shown that ROS not only inhibited FOLR1 mediated MTHF uptake but also affected all other mechanisms of membrane-mediated MTHF uptake. Generation of ROS with the use of AED might therefore provide an additional explanation for the disturbed folate transfer across the blood-CSF barrier in patients with CFD.


Assuntos
Anticonvulsivantes/farmacologia , Receptor 1 de Folato/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tetra-Hidrofolatos/metabolismo , Carbamazepina/metabolismo , Receptor 1 de Folato/genética , Humanos , Fenitoína/metabolismo , RNA Interferente Pequeno/metabolismo , Ácido Valproico/metabolismo
13.
Mol Genet Metab ; 99(1): 58-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19766516

RESUMO

We describe a 3.5-year-old female with Alpers disease with a POLG genotype of p.A467T/p.G848S and with a lethal outcome. Laboratory investigation revealed elevated CSF neopterin, IL-6, IL-8, IFN-gamma, reduced CSF 5-methyltetrahydrofolate (5MTHF), and increased serum as well as CSF folate receptor blocking autoantibodies. Treatment with oral Leucovorine (5-formyl-tetrahydrofolate) was initiated at 0.25mg/kg bid, and later increased to 4mg/kg bid. Under treatment CSF levels of 5MTHF, seizure frequency and communicative abilities improved. Over a time span of 17months, CSF levels of IL-6 and IFN-gamma decreased, levels of folate receptor blocking autoantibodies continued to raise, whereas CSF IL-8 remained elevated 1500-fold above normal. The child died without apparent stress at the age of 5.5years. Alpers disease, a neurodegenerative disease usually presents in the first years of life as a progressive encephalopathy with multifocal myoclonic seizures, developmental regression, cortical blindness and early death. The underlying genetic defect has been attributed to mutations of the catalytic subunit of the mitochondrial DNA polymerase-gamma leading to an organ-specific mitochondrial DNA depletion syndrome with reduced activity of respiratory chain enzyme complexes in the brain and the liver. A curative therapy is not available. This case report of Alpers disease provides new insights into the pathophysiology of Alpers disease, where mitochondrial dysfunction in conjunction with inflammatory cytokines and blocking folate receptor autoantibodies may lead to a secondary cerebral folate deficiency syndrome. The treatment of the latter provides relief to the patient without stopping the underlying disease.


Assuntos
Esclerose Cerebral Difusa de Schilder/líquido cefalorraquidiano , Ácido Fólico/líquido cefalorraquidiano , Mediadores da Inflamação/líquido cefalorraquidiano , Substituição de Aminoácidos , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Pré-Escolar , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Esclerose Cerebral Difusa de Schilder/genética , Esclerose Cerebral Difusa de Schilder/metabolismo , Evolução Fatal , Feminino , Receptores de Folato com Âncoras de GPI , Ácido Fólico/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interferon gama/líquido cefalorraquidiano , Interleucina-6/líquido cefalorraquidiano , Interleucina-8/líquido cefalorraquidiano , Neopterina/líquido cefalorraquidiano , Receptores de Superfície Celular/imunologia
14.
Autism Res Treat ; 2020: 9095284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294225

RESUMO

BACKGROUND: Biomarkers such as oxidative stress, folate receptor alpha (FRα) autoimmunity, and abnormal brain serotonin turnover are common in autism. METHODS: Oxidative stress biomarkers with pro- and antioxidants were measured in the severe form of infantile autism (n = 38) and controls (n = 24). Children and parents had repeated testing for serum FR autoantibodies, spinal fluid dopamine and serotonin metabolites, pterins, and N5-methyltetrahydrofolate (MTHF). Statistical analysis assessed correlations between variables. Genetic analysis included the SLC6A4 and SLC29A4 genes encoding synaptic serotonin reuptake proteins. RESULTS: Compared to controls, the autism group showed a significant increase in oxidative DNA damage in lymphocytes, plasma ceruloplasmin and copper levels with a high copper/zinc ratio, thiol proteins, and superoxide dismutase (SOD) activity. Vitamin C levels were significantly diminished. In most autistic patients, the vitamin A (64%) and D (70%) levels were low. Serum FR autoantibodies fluctuating over 5-7 week periods presented in 68% of all autistic children, 41% of parents vs. 3.3% of control children and their parents. CSF showed lowered serotonin 5-hydroxyindole acetic acid (5HIAA) metabolites in 13 (34%), a low 5HIAA to HVA (dopamine metabolite) ratio in 5 (13%), low 5HIAA and MTHF in 2 (5%), and low MTHF in 8 patients (21%). A known SLC6A4 mutation was identified only in 1 autistic child with low CSF 5HIAA and a novel SLC29A4 mutation was identified in identical twins. Low CSF MTHF levels among only 26% of subjects can be explained by the fluctuating FR antibody titers. Two or more aberrant pro-oxidant and/or antioxidant factors predisposed to low CSF serotonin metabolites. Three autistic children having low CSF 5HIAA and elevated oxidative stress received antioxidative supplements followed by CSF 5HIAA normalisation. CONCLUSION: In autism, we found diverse combinations for FR autoimmunity and/or oxidative stress, both amenable to treatment. Parental and postnatal FR autoantibodies tend to block folate passage to the brain affecting folate-dependent pathways restored by folinic acid treatment, while an abnormal redox status tends to induce reduced serotonin turnover, corrected by antioxidant therapy. Trial Registration. The case-controlled study was approved in 2008 by the IRB at Liège University (Belgian Number: B70720083916). Lay Summary. Children with severe infantile autism frequently have serum folate receptor autoantibodies that block the transport of the essential vitamin folate across the blood-brain barrier to the brain. Parents are often asymptomatic carriers of these serum folate receptor autoantibodies, which in mothers can block folate passage across the placenta to their unborn child. This folate deficiency during the child's intrauterine development may predispose to neural tube defects and autism. Oxidative stress represents a condition with the presence of elevated toxic oxygen derivatives attributed to an imbalance between the formation and protection against these toxic reactive oxygen derivatives. Oxidative stress was found to be present in autistic children where these reactive oxygen derivatives can cause damage to DNA, which changes DNA function and regulation of gene expression. In addition, excessive amounts of these toxic oxygen derivatives are likely to damage the enzyme producing the neuromessenger serotonin in the brain, diminished in about 1/3 of the autistic children. Testing children with autism for oxidative stress and its origin, as well as testing for serum folate receptor autoantibodies, could open new approaches towards more effective treatments.

15.
Autism Res Treat ; 2019: 7486431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316831

RESUMO

BACKGROUND: In contrast to multiple rare monogenetic abnormalities, a common biomarker among children with infantile autism and their parents is the discovery of serum autoantibodies directed to the folate receptor alpha (FRα) localized at blood-brain and placental barriers, impairing physiologic folate transfer to the brain and fetus. Since outcome after behavioral intervention remains poor, a trial was designed to treat folate receptor alpha (FRα) autoimmunity combined with correction of deficient nutrients due to abnormal feeding habits. METHODS: All participants with nonsyndromic infantile autism underwent a routine protocol measuring CBC, iron, vitamins, coenzyme Q10, metals, and trace elements. Serum FRα autoantibodies were assessed in patients, their parents, and healthy controls. A self-controlled therapeutic trial treated nutritional derangements with addition of high-dose folinic acid if FRα autoantibodies tested positive. The Childhood Autism Rating Scale (CARS) monitored at baseline and following 2 years of treatment was compared to the CARS of untreated autistic children serving as a reference. RESULTS: In this self-controlled trial (82 children; mean age ± SD: 4.4 ± 2.3 years; male:female ratio: 4.8:1), FRα autoantibodies were found in 75.6 % of the children, 34.1 % of mothers, and 29.4 % of fathers versus 3.3 % in healthy controls. Compared to untreated patients with autism (n=84) whose CARS score remained unchanged, a 2-year treatment decreased the initial CARS score from severe (mean ± SD: 41.34 ± 6.47) to moderate or mild autism (mean ± SD: 34.35 ± 6.25; paired t-test p<0.0001), achieving complete recovery in 17/82 children (20.7 %). Prognosis became less favorable with the finding of higher FRα autoantibody titers, positive maternal FRα autoantibodies, or FRα antibodies in both parents. CONCLUSIONS: Correction of nutritional deficiencies combined with high-dose folinic acid improved outcome for autism, although the trend of a poor prognosis due to maternal FRα antibodies or FRα antibodies in both parents may warrant folinic acid intervention before conception and during pregnancy.

16.
JIMD Rep ; 47(1): 9-16, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31240161

RESUMO

BACKGROUND: Brain monoamine vesicular transport disease is an infantile onset neurodevelopmental disorder caused by variants in SLC18A2, which codes for the vesicular monoamine transporter 2 (VMAT2) protein, involved in the transport of monoamines into synaptic vesicles and of serotonin into platelet dense granules. CASE PRESENTATION: The presented case is of a child, born of healthy consanguineous parents, who exhibited hypotonia, mental disability, epilepsy, uncontrolled movements, and gastrointestinal problems. A trial treatment with L-DOPA proved unsuccessful and the exact neurological involvement could not be discerned due to normal metabolic and brain magnetic resonance imaging results.Platelet studies and whole genome sequencing were performed. At age 4, the child's platelets showed a mild aggregation and adenosine triphosphate secretion defect that could be explained by dysmorphic dense granules observed by electron microscopy. Interestingly, the dense granules were almost completely depleted of serotonin. A novel homozygous p.P316A missense variant in VMAT2 was detected in the patient and the consanguineous parents were found to be heterozygous for this variant. Although the presence of VMAT2 on platelet dense granules has been demonstrated before, this is the first report of defective platelet dense granule function related to absent serotonin storage in a patient with VMAT2 deficiency but without obvious clinical bleeding problems. CONCLUSIONS: This study illustrates the homology between serotonin metabolism in brain and platelets, suggesting that these blood cells can be model cells for some pathways relevant for neurological diseases. The literature on VMAT2 deficiency is reviewed.

17.
N Engl J Med ; 352(19): 1985-91, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15888699

RESUMO

In infantile-onset cerebral folate deficiency, 5-methyltetrahydrofolate (5MTHF) levels in the cerebrospinal fluid are low, but folate levels in the serum and erythrocytes are normal. We examined serum specimens from 28 children with cerebral folate deficiency, 5 of their mothers, 28 age-matched control subjects, and 41 patients with an unrelated neurologic disorder. Serum from 25 of the 28 patients and 0 of 28 control subjects contained high-affinity blocking autoantibodies against membrane-bound folate receptors that are present on the choroid plexus. Oral folinic acid normalized 5MTHF levels in the cerebrospinal fluid and led to clinical improvement. Cerebral folate deficiency is a disorder in which autoantibodies can prevent the transfer of folate from the plasma to the cerebrospinal fluid.


Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/diagnóstico , Proteínas de Transporte/imunologia , Deficiência de Ácido Fólico/imunologia , Ácido Fólico/metabolismo , Receptores de Superfície Celular/imunologia , Tetra-Hidrofolatos/líquido cefalorraquidiano , Adolescente , Adulto , Transporte Biológico , Barreira Hematoencefálica , Estudos de Casos e Controles , Criança , Pré-Escolar , Plexo Corióideo , Feminino , Receptores de Folato com Âncoras de GPI , Ácido Fólico/sangue , Deficiência de Ácido Fólico/sangue , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Humanos , Masculino
18.
Clin Pract ; 5(2): 707, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-26236449

RESUMO

We report on the case of two toddlers who presented in the last 2 years with heart and vascular murmur, respectively, and in whom the diagnosis of paraspinal arterio-venous fistula was made. Paraspinal arterio-venous fistulae in children are extremely rare congenital or post-traumatic vascular malformations. In the rare case of connection with the spinal venous system, they might affect spinal vascularization due to potential venous congestion. Interventional embolization rather than surgery is the treatment of choice for such lesions. Up to now, there is no consensus about the indication of prophylactic closure of asymptomatic fistulae. However, close clinical follow-up with repeated spinal magnetic resonance imaging to exclude venous congestion is mandatory for young asymptomatic patients until treatment.

19.
Hum Pathol ; 34(3): 253-62, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12673560

RESUMO

Inflammatory pseudotumors (IPs), mostly benign lesions characterized by fibrotic ground tissue and polyclonal mononuclear infiltrate, may affect all organ systems. IPs originating in the central nervous system (IP-CNS) are very rare, and their distinct histopathologic features are poorly characterized. Three otherwise healthy patients (age 8, 15, and 17 years) presented with focal neurologic symptoms (seizures, n = 2; headaches, n = 1), corresponding to a left temporal, left occipital, and left frontal IP, respectively, extending from meningeal structures into brain tissue. After resection, no recurrence was observed in patient 1 during 5 years of follow-up, whereas patient 2 developed a rapidly progressive local recurrence and a second intracerebral lesion despite antiviral, immunosuppressive, antibiotic, and radiation therapy. In patient 3, who also showed local recurrences, sequential histopathologic investigations revealed transformation to a semimalignant fibrohistiocytic tumor. In this patient, anaplastic lymphoma kinase (ALK) expression was also positive, whereas it was negative in patient 1. A detailed literature analysis confirmed that most IP-CNS arise from dural/meningeal structures (n = 34). Intraparenchymatous (n = 7), mixed intraparenchymatous/meningeal (n = 4), and intraventricular lesions (n = 7) or IP extending per continuitatem from intracerebral to extracerebral sites (n = 5) were rare. The recurrence rate was 40% within 2 years in general. It was increased after incomplete resection and in female patients (multivariate Cox regression model, P < 0.02). Although rare, IP-CNS are important differential diagnoses among tumor-like intracranial lesions. Their potential risk of malignant transformation and high risk of recurrence necessitate close follow-up, especially when resection is incomplete. Prospective multicenter trials are needed to optimize classification and treatment of this rare inflammatory lesion.


Assuntos
Encefalopatias/diagnóstico , Granuloma de Células Plasmáticas/diagnóstico , Adolescente , Anticorpos Antivirais/líquido cefalorraquidiano , Encefalopatias/patologia , Encefalopatias/cirurgia , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Pré-Escolar , Dura-Máter/patologia , Feminino , Lobo Frontal , Granuloma de Células Plasmáticas/patologia , Granuloma de Células Plasmáticas/cirurgia , Humanos , Imunoglobulina G/líquido cefalorraquidiano , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/patologia , Recidiva , Simplexvirus/imunologia , Lobo Temporal/patologia
20.
Pathol Res Pract ; 199(10): 667-75, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14666969

RESUMO

Flow cytometry (FC) is of increasing importance for the analysis of cerebrospinal fluid (CSF) lymphocytes because of its ability to detect a large spectrum of cellular characteristics (granularity, volume, surface antigen expression) even in small amounts of cells. Data on CSF FC in children are very limited. Here, we summarize our 3-year experience of CSF FC routinely performed in pediatric patients with assumed inflammatory central nervous system (CNS) disease. Among 109 samples sent for analysis, flow cytometric detection of major leukocyte subsets was possible in 78% (85 out of 109), which exceeds the 31% rate of our retrospective microscopic pediatric control group. Apart from physiologic lymphocytes (100%) or monocytes (48%), 11 out of these 85 samples showed granulocytes, two showed proliferated monocytes, and nine displayed proliferated lymphocytes. In most children, the proliferated lymphocytes consisted of a polyclonal population of CD4+ and CD8+ T cells. Compared with literature data, eight children showed abnormally composed lymphocyte subsets (surface antigen expression) within the main lymphocyte population. However, none of these changes was specific for distinct diseases or allowed a distinction between patients with and without primary inflammatory processes. These data suggest that CSF FC may be the most effective modality to differentiate major CSF leukocyte subsets. At present, further differentiation of distinct cell populations, such as proliferated lymphocytes, is of limited clinical impact. This may, however, gain increasing interest in the future.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico , Líquido Cefalorraquidiano/citologia , Citometria de Fluxo/métodos , Adolescente , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Doenças do Sistema Nervoso Central/imunologia , Líquido Cefalorraquidiano/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Lactente , Masculino , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA