Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 199(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760848

RESUMO

Klebsiella pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of K. pneumoniae, we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S. National Institutes of Health Clinical Center. The library is made up of 12,000 individually arrayed mutants of a carbapenemase deletion parent strain and provides coverage of 85% of the predicted genes. The library includes an average of 2.5 mutants per gene, with most insertion locations identified and confirmed in two independent rounds of Sanger sequencing. On the basis of an independent transposon sequencing assay, about half of the genes lacking representatives in this "two-allele" library are essential for growth on nutrient agar. To validate the use of the library for phenotyping, we screened candidate mutants for increased antibiotic sensitivity by using custom phenotypic microarray plates. This screening identified several mutations increasing sensitivity to ß-lactams (in acrB1, mcrB, ompR, phoP1, and slt1) and found that two-component regulator cpxAR mutations increased multiple sensitivities (to an aminoglycoside, a fluoroquinolone, and several ß-lactams). Strains making up the two-allele mutant library are available through a web-based request mechanism.IMPORTANCE K. pneumoniae and other carbapenem-resistant members of the family Enterobacteriaceae are recognized as a top public health threat by the Centers for Disease Control and Prevention. The analysis of these major nosocomial pathogens has been limited by the experimental resources available for studying them. The work presented here describes a sequence-defined mutant library of a K. pneumoniae strain (KPNIH1) that represents an attractive model for studies of this pathogen because it is a recent isolate of the major sequence type that causes infection, the epidemiology of the outbreak it caused is well characterized, and an annotated genome sequence is available. The ready availability of defined mutants deficient in nearly all of the nonessential genes of the model strain should facilitate the genetic dissection of complex traits like pathogenesis and antibiotic resistance.

2.
mBio ; 3(2)2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434848

RESUMO

UNLABELLED: To help define the biological functions of nonessential genes of Francisella novicida, we measured the growth of arrayed members of a comprehensive transposon mutant library under a variety of nutrition and stress conditions. Mutant phenotypes were identified for 37% of the genes, corresponding to ten carbon source utilization pathways, nine amino acid- and nucleotide-biosynthetic pathways, ten intrinsic antibiotic resistance traits, and six other stress resistance traits. The greatest surprise of the analysis was the large number of genotype-phenotype relationships that were not predictable from studies of Escherichia coli and other model species. The study identified candidate genes for a missing glycolysis function (phosphofructokinase), an unusual proline-biosynthetic pathway, parallel outer membrane lipid asymmetry maintenance systems, and novel antibiotic resistance functions. The analysis provides an evaluation of annotation predictions, identifies cases in which fundamental processes differ from those in model species, and helps create an empirical foundation for understanding virulence and other complex processes. IMPORTANCE: The value of genome sequences as foundations for analyzing complex traits in nonmodel organisms is limited by the need to rely almost exclusively on sequence similarities to predict gene functions in annotations. Many genes cannot be assigned functions, and some predictions are incorrect or incomplete. Due to these limitations, genome-scale experimental approaches that test and extend bioinformatics-based predictions are sorely needed. In this study, we describe such an approach based on phenotypic analysis of a comprehensive, sequence-defined transposon mutant library.


Assuntos
Francisella/crescimento & desenvolvimento , Francisella/genética , Estudos de Associação Genética , Mutagênese Insercional , Meios de Cultura/química , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA