Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(3): 100336, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706955

RESUMO

Lipoprotein(a) [Lp(a)] has two main proteins, apoB100 and apo(a). High levels of Lp(a) confer an increased risk for atherosclerotic cardiovascular disease. Most people have two circulating isoforms of apo(a) differing in their molecular mass, determined by the number of Kringle IV Type 2 repeats. Previous studies report a strong inverse relationship between Lp(a) levels and apo(a) isoform sizes. The roles of Lp(a) production and fractional clearance and how ancestry affects this relationship remain incompletely defined. We therefore examined the relationships of apo(a) size with Lp(a) levels and both apo(a) fractional clearance rates (FCR) and production rates (PR) in 32 individuals not on lipid-lowering treatment. We determined plasma Lp(a) levels and apo(a) isoform sizes, and used the relative expression of the two isoforms to calculate a "weighted isoform size" (wIS). Stable isotope studies were performed, using D3-leucine, to determine the apo(a) FCR and PR. As expected, plasma Lp(a) concentrations were inversely correlated with wIS (R2 = 0.27; P = 0.002). The wIS had a modest positive correlation with apo(a) FCR (R2 = 0.10, P = 0.08), and a negative correlation with apo(a) PR (R2 = 0.11; P = 0.06). The relationship between wIS and PR became significant when we controlled for self-reported race and ethnicity (SRRE) (R2 = 0.24, P = 0.03); controlling for SRRE did not affect the relationship between wIS and FCR. Apo(a) wIS plays a role in both FCR and PR; however, adjusting for SRRE strengthens the correlation between wIS and PR, suggesting an effect of ancestry.


Assuntos
Aterosclerose , Lipoproteína(a) , Humanos , Apoproteína(a)/metabolismo , Apolipoproteínas A , Isoformas de Proteínas
2.
Lipids Health Dis ; 22(1): 144, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670291

RESUMO

BACKGROUND: Lipoprotein (a) [Lp(a)] is an apoB100-containing lipoprotein with high levels being positively associated with atherosclerotic cardiovascular disease. Lp(a) levels are genetically determined. However, previous studies report a negative association between Lp(a) and saturated fatty acid intake. Currently, apoB100 lowering therapies are used to lower Lp(a) levels, and apheresis therapy is FDA approved for patients with extreme elevations of Lp(a). The current study analyzed the association of free-living diet components with plasma Lp(a) levels. METHODS: Dietary composition data was collected during screening visits for enrollment in previously completed lipid and lipoprotein metabolism studies at Columbia University Irving Medical Center via a standardized protocol by registered dietitians using 24 hour recalls. Data were analyzed with the Nutrition Data System for Research (Version 2018). Diet quality was calculated using the Healthy Eating Index (HEI) score. Fasting plasma Lp(a) levels were measured via an isoform-independent ELISA and apo(a) isoforms were measured using gel electrophoresis. RESULTS: We enrolled 28 subjects [Black (n = 18); Hispanic (n = 7); White (n = 3)]. The mean age was 48.3 ± 12.5 years with 17 males. Median level of Lp(a) was 79.9 nmol/L (34.4-146.0) and it was negatively associated with absolute (grams/day) and relative (percent of total calories) intake of dietary saturated fatty acids (SFA) (R = -0.43, P = 0.02, SFA …(% CAL): R = -0.38, P = 0.04), palmitic acid intake (R = -0.38, P = 0.05), and stearic acid intake (R = -0.40, P = 0.03). Analyses of associations with HEI score when stratified based on Lp(a) levels > or ≤ 100 nmol/L revealed no significant associations with any of the constituent factors. CONCLUSIONS: Using 24 hour recall, we confirm previous findings that Lp(a) levels are negatively associated with dietary saturated fatty acid intake. Additionally, Lp(a) levels are not related to diet quality, as assessed by the HEI score. The mechanisms underlying the relationship of SFA with Lp(a) require further investigation.


Assuntos
Dieta , Lipoproteína(a) , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Apolipoproteínas A , Jejum , Ingestão de Energia
3.
Blood ; 133(7): 743-753, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30504459

RESUMO

Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby, prevents excessive coagulation without compromising hemostasis. Studies on tPA regulation have focused on its acute local release by vascular cells in response to injury or other stimuli. However, very little is known about sources, regulation, and fibrinolytic function of noninjury-induced systemic plasma tPA. We explore the role and regulation of hepatocyte-derived tPA as a source of basal plasma tPA activity and as a contributor to fibrinolysis after vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat Hepatocyte-DACH1-knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity, bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat Conversely, hepatocyte-ATF6-knockout mice show decreases in these parameters. The inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis after vascular injury.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Proteínas do Olho/fisiologia , Fibrinólise/fisiologia , Hepatócitos/patologia , Trombose/patologia , Ativador de Plasminogênio Tecidual/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Diabetes Obes Metab ; 23(3): 850-853, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236485

RESUMO

Naltrexone/bupropion (NB) is a US Food and Drug Administration-approved antiobesity medication. Clinical trials have shown variable weight loss, with responders and non-responders. NB is believed to act on central dopaminergic pathways to suppress appetite. The Taq1A polymorphism near DRD2 (rs1800497) is associated with the density of striatal dopamine D2 receptors, with individuals carrying the A allele (AA or AG; termed A1+) having 30%-40% fewer dopamine binding sites than those who do not carry the A allele (GG; termed A1-). We performed a pilot study to assess the association of the rs1800497 ANKK1 c.2137G > A (p.Glu713Lys) variant with weight loss with NB treatment in 33 subjects. Mean (SD) weight loss was 5.9% (3.2%) for the A1+ genotype group (n = 15) and 4.2% (4.2%) for the A1- genotype group (n = 18). The mean weight loss for the A1+ genotype group was significantly greater than the predefined clinically significant 4% weight-loss target (one-sample t-test, P = .035), whereas the mean weight loss for the A1- genotype group was not (P = .85). Individuals with the A1+ genotype appear to respond better to NB than A1- individuals.


Assuntos
Bupropiona , Naltrexona , Bupropiona/uso terapêutico , Genótipo , Humanos , Naltrexona/uso terapêutico , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases , Receptores de Dopamina D2/genética , Redução de Peso/genética
5.
J Nutr ; 150(8): 2089-2100, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492148

RESUMO

BACKGROUND: Factor VIIc, fibrinogen, and plasminogen activator inhibitor 1 (PAI-1) are cardiovascular disease (CVD) risk factors and are modulated, in part, by fat type and amount. OBJECTIVE: We evaluated fat type and amount on the primary outcomes: factor VIIc, fibrinogen, and PAI-1. METHODS: In the Dietary Effects on Lipoproteins and Thrombogenic Activity (DELTA) Trial, 2 controlled crossover feeding studies evaluated substituting carbohydrate or MUFAs for SFAs. Study 1: healthy participants (n = 103) were provided with (8 wk) an average American diet [AAD; designed to provide 37% of energy (%E) as fat, 16% SFA], a Step 1 diet (30%E fat, 9% SFA), and a diet low in SFA (Low-Sat; 26%E fat, 5% SFA). Study 2: participants (n = 85) at risk for CVD and metabolic syndrome (MetSyn) were provided with (7 wk) an AAD, a step 1 diet, and a high-MUFA diet (designed to provide 37%E fat, 8% SFA, 22% MUFA). RESULTS: Study 1: compared with AAD, the Step 1 and Low-Sat diets decreased mean factor VIIc by 1.8% and 2.6% (overall P = 0.0001), increased mean fibrinogen by 1.2% and 2.8% (P = 0.0141), and increased mean square root PAI-1 by 0.0% and 6.0% (P = 0.0037), respectively. Study 2: compared with AAD, the Step 1 and high-MUFA diets decreased mean factor VIIc by 4.1% and 3.2% (overall P < 0.0001), increased mean fibrinogen by 3.9% and 1.5% (P = 0.0083), and increased mean square-root PAI-1 by 2.0% and 5.8% (P = 0.1319), respectively. CONCLUSIONS: Replacing SFA with carbohydrate decreased factor VIIc and increased fibrinogen in healthy and metabolically unhealthy individuals and also increased PAI-1 in healthy subjects. Replacing SFA with MUFA decreased factor VIIc and increased fibrinogen but less than carbohydrate. Our results indicate an uncertain effect of replacing SFA with carbohydrate or MUFA on cardiometabolic risk because of small changes in hemostatic factors and directionally different responses to decreasing SFA. This trial was registered at https://clinicaltrials.gov/ct2/show/NCT00000538?term=NCT00000538&rank=1 as NCT00000538.


Assuntos
Doenças Cardiovasculares/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Fator VII/metabolismo , Fibrinogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Adulto , Idoso , Dieta , Gorduras na Dieta/classificação , Fator VII/genética , Feminino , Fibrinogênio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hemostasia , Humanos , Masculino , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores de Risco , Adulto Jovem
6.
Arterioscler Thromb Vasc Biol ; 39(1): 63-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580564

RESUMO

Objective- Apo (apolipoprotein) CIII inhibits lipoprotein lipase (LpL)-mediated lipolysis of VLDL (very-low-density lipoprotein) triglyceride (TG) and decreases hepatic uptake of VLDL remnants. The discovery that 5% of Lancaster Old Order Amish are heterozygous for the APOC3 R19X null mutation provided the opportunity to determine the effects of a naturally occurring reduction in apo CIII levels on the metabolism of atherogenic containing lipoproteins. Approach and Results- We conducted stable isotope studies of VLDL-TG and apoB100 in 5 individuals heterozygous for the null mutation APOC3 R19X (CT) and their unaffected (CC) siblings. Fractional clearance rates and production rates of VLDL-TG and apoB100 in VLDL, IDL (intermediate-density lipoprotein), LDL, apo CIII, and apo CII were determined. Affected (CT) individuals had 49% reduction in plasma apo CIII levels compared with CCs ( P<0.01) and reduced plasma levels of TG (35%, P<0.02), VLDL-TG (45%, P<0.02), and VLDL-apoB100 (36%, P<0.05). These changes were because of higher fractional clearance rates of VLDL-TG and VLDL-apoB100 with no differences in production rates. CTs had higher rates of the conversion of VLDL remnants to LDL compared with CCs. In contrast, rates of direct removal of VLDL remnants did not differ between the groups. As a result, the flux of apoB100 from VLDL to LDL was not reduced, and the plasma levels of LDL-cholesterol and LDL-apoB100 were not lower in the CT group. Apo CIII production rate was lower in CTs compared with CCs, whereas apo CII production rate was not different between the 2 groups. The fractional clearance rates of both apo CIII and apo CII were higher in CTs than CCs. Conclusions- These studies demonstrate that 50% reductions in plasma apo CIII, in otherwise healthy subjects, results in a significantly higher rate of conversion of VLDL to LDL, with little effect on direct hepatic uptake of VLDL. When put in the context of studies demonstrating significant protection from cardiovascular events in individuals with loss of function variants in the APOC3 gene, our results provide strong evidence that therapies which increase the efficiency of conversion of VLDL to LDL, thereby reducing remnant concentrations, should reduce the risk of cardiovascular disease.


Assuntos
Apolipoproteína C-III/fisiologia , Lipídeos/sangue , Lipoproteínas/metabolismo , Adulto , Idoso , Apolipoproteína B-100/metabolismo , Apolipoproteína C-III/deficiência , Apolipoproteína C-III/genética , Feminino , Humanos , Lipólise , Lipoproteínas IDL/metabolismo , Lipoproteínas VLDL/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação
7.
Arterioscler Thromb Vasc Biol ; 38(7): 1493-1503, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853564

RESUMO

OBJECTIVE: The mechanisms underlying the cardiovascular benefit of the anti-diabetic drug metformin are poorly understood. Recent studies have suggested metformin may upregulate macrophage reverse cholesterol transport. The final steps of reverse cholesterol transport are mediated by the sterol transporters, ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8), which facilitate hepato-biliary transport of cholesterol. This study was undertaken to assess the possibility that metformin induces Abcg5 and Abcg8 expression in liver and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Metformin-treated mouse or human primary hepatocytes showed increased expression of Abcg5/8 and the bile salt export pump, Bsep. Administration of metformin to Western-type diet-fed mice showed significant upregulation of Abcg5/8 and Bsep. This resulted in increased initial clearance of 3H-cholesteryl ester HDL (high-density lipoprotein) from plasma. However, fecal 3H-cholesterol output was only marginally increased, possibly reflecting increased hepatic Ldlr (low-density lipoprotein receptor) expression, which would increase nonradiolabeled cholesterol uptake. Abcg5/8 undergo strong circadian variation. Available chromatin immunoprecipitation-Seq data suggested multiple binding sites for Period 2, a transcriptional repressor, within the Abcg5/8 locus. Addition of AMPK (5' adenosine monophosphate-activated protein kinase) agonists decreased Period 2 occupancy, suggesting derepression of Abcg5/8. Inhibition of ATP citrate lyase, which generates acetyl-CoA from citrate, also decreased Period 2 occupancy, with concomitant upregulation of Abcg5/8. This suggests a mechanistic link between feeding-induced acetyl-CoA production and decreased cholesterol excretion via Period 2, resulting in inhibition of Abcg5/8 expression. CONCLUSIONS: Our findings provide partial support for the concept that metformin may provide cardiovascular benefit via increased reverse cholesterol transport but also indicate increased Ldlr expression as a potential additional mechanism. AMPK activation or ATP citrate lyase inhibition may mediate antiatherogenic effects through increased ABCG5/8 expression.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/sangue , Hepatócitos/efeitos dos fármacos , Lipoproteínas/metabolismo , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Ativação Enzimática , Células HEK293 , Hepatócitos/enzimologia , Humanos , Lipoproteínas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Circadianas Period/metabolismo , Cultura Primária de Células , Receptores de LDL/metabolismo , Regulação para Cima
8.
J Lipid Res ; 59(12): 2397-2402, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293969

RESUMO

Elevated lipoprotein (a) [Lp(a)] levels increase the risk for CVD. Novel treatments that decrease LDL cholesterol (LDL-C) have also shown promise for reducing Lp(a) levels. Mipomersen, an antisense oligonucleotide that inhibits apoB synthesis, is approved for the treatment of homozygous familial hypercholesterolemia. It decreases plasma levels of LDL-C by 25% to 39% and lowers levels of Lp(a) by 21% to 39%. We examined the mechanisms for Lp(a) lowering during mipomersen treatment. We enrolled 14 healthy volunteers who received weekly placebo injections for 3 weeks followed by weekly injections of mipomersen for 7 weeks. Stable isotope kinetic studies were performed using deuterated leucine at the end of the placebo and mipomersen treatment periods. The fractional catabolic rate (FCR) of Lp(a) was determined from the enrichment of a leucine-containing peptide specific to apo(a) by LC/MS. The production rate (PR) of Lp(a) was calculated from the product of Lp(a) FCR and Lp(a) concentration (converted to pool size). In a diverse population, mipomersen reduced plasma Lp(a) levels by 21%. In the overall study group, mipomersen treatment resulted in a 27% increase in the FCR of Lp(a) with no significant change in PR. However, there was heterogeneity in the response to mipomersen therapy, and changes in both FCRs and PRs affected the degree of change in Lp(a) concentrations. Mipomersen treatment decreases Lp(a) plasma levels mainly by increasing the FCR of Lp(a), although changes in Lp(a) PR were significant predictors of reductions in Lp(a) levels in some subjects.


Assuntos
Lipoproteína(a)/sangue , Oligonucleotídeos/farmacologia , Adulto , Apolipoproteína B-100/sangue , LDL-Colesterol/sangue , Cromatografia Líquida , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos Antissenso/farmacologia
9.
Circulation ; 135(4): 352-362, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27986651

RESUMO

BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Lipoproteínas VLDL/metabolismo , Inibidores de PCSK9 , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Arterioscler Thromb Vasc Biol ; 37(9): 1770-1775, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729361

RESUMO

OBJECTIVE: Lp(a) [lipoprotein (a)] is composed of apoB (apolipoprotein B) and apo(a) [apolipoprotein (a)] and is an independent risk factor for cardiovascular disease and aortic stenosis. In clinical trials, anacetrapib, a CETP (cholesteryl ester transfer protein) inhibitor, causes significant reductions in plasma Lp(a) levels. We conducted an exploratory study to examine the mechanism for Lp(a) lowering by anacetrapib. APPROACH AND RESULTS: We enrolled 39 participants in a fixed-sequence, double-blind study of the effects of anacetrapib on the metabolism of apoB and high-density lipoproteins. Twenty-nine patients were randomized to atorvastatin 20 mg/d, plus placebo for 4 weeks, and then atorvastatin plus anacetrapib (100 mg/d) for 8 weeks. The other 10 subjects were randomized to double placebo for 4 weeks followed by placebo plus anacetrapib for 8 weeks. We examined the mechanisms of Lp(a) lowering in a subset of 12 subjects having both Lp(a) levels >20 nmol/L and more than a 15% reduction in Lp(a) by the end of anacetrapib treatment. We performed stable isotope kinetic studies using 2H3-leucine at the end of each treatment to measure apo(a) fractional catabolic rate and production rate. Median baseline Lp(a) levels were 21.5 nmol/L (interquartile range, 9.9-108.1 nmol/L) in the complete cohort (39 subjects) and 52.9 nmol/L (interquartile range, 38.4-121.3 nmol/L) in the subset selected for kinetic studies. Anacetrapib treatment lowered Lp(a) by 34.1% (P≤0.001) and 39.6% in the complete and subset cohort, respectively. The decreases in Lp(a) levels were because of a 41% reduction in the apo(a) production rate, with no effects on apo(a) fractional catabolic rate. CONCLUSIONS: Anacetrapib reduces Lp(a) levels by decreasing its production. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00990808.


Assuntos
Anticolesterolemiantes/uso terapêutico , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Hipercolesterolemia/tratamento farmacológico , Lipoproteína(a)/sangue , Oxazolidinonas/uso terapêutico , Adulto , Idoso , Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Cromatografia Líquida , Método Duplo-Cego , Regulação para Baixo , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Oxazolidinonas/efeitos adversos , Pennsylvania , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Fatores de Tempo , Resultado do Tratamento
11.
J Lipid Res ; 58(9): 1756-1764, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28720561

RESUMO

Lipoprotein (a) [Lp(a)] is characterized by apolipoprotein (a) [apo(a)] covalently bound to apolipoprotein B 100. It was described in human plasma by Berg et al. in 1963 and the gene encoding apo(a) (LPA) was cloned in 1987 by Lawn and colleagues. Epidemiologic and genetic studies demonstrate that increases in Lp(a) plasma levels increase the risk of atherosclerotic cardiovascular disease. Novel Lp(a) lowering treatments highlight the need to understand the regulation of plasma levels of this atherogenic lipoprotein. Despite years of research, significant uncertainty remains about the assembly, secretion, and clearance of Lp(a). Specifically, there is ongoing controversy about where apo(a) and apoB-100 bind to form Lp(a); which apoB-100 lipoproteins bind to apo(a) to create Lp(a); whether binding of apo(a) is reversible, allowing apo(a) to bind to more than one apoB-100 lipoprotein during its lifespan in the circulation; and how Lp(a) or apo(a) leave the circulation. In this review, we highlight past and recent data from stable isotope studies of Lp(a) metabolism, highlighting the critical metabolic uncertainties that exist. We present kinetic models to describe results of published studies using stable isotopes and suggest what future studies are required to improve our understanding of Lp(a) metabolism.


Assuntos
Lipoproteína(a)/metabolismo , Apolipoproteínas B/metabolismo , Humanos , Cinética , Modelos Biológicos
12.
J Lipid Res ; 58(6): 1214-1220, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314859

RESUMO

Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.


Assuntos
Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Lipoproteínas VLDL/metabolismo , Oxazolidinonas/farmacologia , Triglicerídeos/metabolismo , Apolipoproteína C-II/sangue , Apolipoproteína C-III/sangue , Apolipoproteínas E/sangue , Interações Medicamentosas , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Pessoa de Meia-Idade
13.
Arterioscler Thromb Vasc Biol ; 36(5): 994-1002, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966279

RESUMO

OBJECTIVE: Anacetrapib (ANA), an inhibitor of cholesteryl ester transfer protein (CETP) activity, increases plasma concentrations of high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA)-I, apoA-II, and CETP. The mechanisms responsible for these treatment-related increases in apolipoproteins and plasma CETP are unknown. We performed a randomized, placebo (PBO)-controlled, double-blind, fixed-sequence study to examine the effects of ANA on the metabolism of HDL apoA-I and apoA-II and plasma CETP. APPROACH AND RESULTS: Twenty-nine participants received atorvastatin (ATV) 20 mg/d plus PBO for 4 weeks, followed by ATV plus ANA 100 mg/d for 8 weeks (ATV-ANA). Ten participants received double PBO for 4 weeks followed by PBO plus ANA for 8 weeks (PBO-ANA). At the end of each treatment, we examined the kinetics of HDL apoA-I, HDL apoA-II, and plasma CETP after D3-leucine administration as well as 2D gel analysis of HDL subspecies. In the combined ATV-ANA and PBO-ANA groups, ANA treatment increased plasma HDL-C (63.0%; P<0.001) and apoA-I levels (29.5%; P<0.001). These increases were associated with reductions in HDL apoA-I fractional clearance rate (18.2%; P=0.002) without changes in production rate. Although the apoA-II levels increased by 12.6% (P<0.001), we could not discern significant changes in either apoA-II fractional clearance rate or production rate. CETP levels increased 102% (P<0.001) on ANA because of a significant reduction in the fractional clearance rate of CETP (57.6%, P<0.001) with no change in CETP production rate. CONCLUSIONS: ANA treatment increases HDL apoA-I and CETP levels by decreasing the fractional clearance rate of each protein.


Assuntos
Anticolesterolemiantes/uso terapêutico , Apolipoproteína A-I/sangue , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Dislipidemias/tratamento farmacológico , Lipoproteínas HDL/sangue , Oxazolidinonas/uso terapêutico , Adulto , Idoso , Anticolesterolemiantes/efeitos adversos , Apolipoproteína A-II/sangue , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Método Duplo-Cego , Dislipidemias/sangue , Dislipidemias/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxazolidinonas/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
14.
J Lipid Res ; 55(9): 1914-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24954421

RESUMO

The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein ((125)I) and in the cholesteryl ester (CE) moiety ([(3)H]). The metabolism of (125)I-/[(3)H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([(3)H]). In contrast, in LDLR(-/-) mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR(-/-) mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR(-/-) mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.


Assuntos
HDL-Colesterol/sangue , Receptores de LDL/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Ésteres do Colesterol/sangue , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Triglicerídeos/sangue
15.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425717

RESUMO

In 2014, exome-wide studies identified a glutamine176lysine (p.E167K) substitution in a protein of unknown function named transmembrane 6 superfamily member 2 (TM6SF2). The p.E167K variant was associated with increased hepatic fat content and reduced levels of plasma TG and LDL cholesterol. Over the next several years, additional studies defined the role of TM6SF2, which resides in the ER and the ER-Golgi interface, in the lipidation of nascent VLDL to generate mature, more TG-rich VLDL. Consistent results from cells and rodents indicated that the secretion of TG was reduced in the p.E167K variant or when hepatic TM6SF2 was deleted. However, data for secretion of APOB was inconsistent, either reduced or increased secretion was observed. A recent study of people homozygous for the variant demonstrated reduced in vivo secretion of large, TG-rich VLDL1 into plasma; both TG and APOB secretion were reduced. Here we present new results demonstrating increased secretion of VLDL APOB with no change in TG secretion in p.E167K homozygous individuals from the Lancaster Amish community compared to their wild-type siblings. Our in vivo kinetic tracer results are supported by in vitro experiments in HepG2 and McA cells with knock-down or Crispr-deletions of TM6SF2, respectively. We offer a model to potentially explain all of the prior data and our new results.

16.
Obes Sci Pract ; 8(5): 682-687, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238225

RESUMO

Background: American adults have gained weight during the COVID-19 pandemic. Little is known about how patients who are medically managed for overweight and obesity, including patients who are prescribed antiobesity pharmacotherapy, have fared. Objective: To assess the COVID-19 pandemic's effect on weight, food choices, and health behaviors in patients receiving medical treatment for overweight or obesity. Methods: Adult patients treated at an urban academic weight management center between 1 May 2019 and 1 May 2020 were electronically surveyed between 23 February and 23 March 2021. The survey assessed changes in weight, eating, behaviors, and the use of antiobesity medications (AOMs) following issuance of social distancing/stay-at-home policies in March 2020. Results: In 970 respondents, median percent weight change for those taking AOMs was -0.459% [interquartile range -5.46%-(+3.73%)] compared to +2.33% [IQR -1.92%-(+6.52%)] for those not taking AOMs (p < 0.001). More participants achieved ≥5% weight loss if they were taking AOMs compared to those who were not (26.7% vs. 15.8%, p = 0.004), and weight gain ≥5% was also lower in those taking AOMs (19.8% vs. 30.3%, p = 0.004). Patients with pre-pandemic BMI ≥30 kg/m2 taking AOMs experienced the greatest weight reduction, and there was greater weight loss associated with increased physical activity. Conclusions and Relevance: Medical weight management protected against weight gain during this period of the COVID-19 pandemic. Increased physical activity, decreased alcohol intake, and use of AOMs were factors that contributed to this protective effect.

17.
J Lipid Res ; 52(4): 745-58, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21217164

RESUMO

The mechanisms of HDL-mediated cholesterol transport from peripheral tissues to the liver are incompletely defined. Here the function of scavenger receptor cluster of differentiation 36 (CD36) for HDL uptake by the liver was investigated. CD36 knockout (KO) mice, which were the model, have a 37% increase (P = 0.008) of plasma HDL cholesterol compared with wild-type (WT) littermates. To explore the mechanism of this increase, HDL metabolism was investigated with HDL radiolabeled in the apolipoprotein (¹²5I) and cholesteryl ester (CE, [³H]) moiety. Liver uptake of [³H] and ¹²5I from HDL decreased in CD36 KO mice and the difference, i. e. hepatic selective CE uptake ([³H]¹²5I), declined (-33%, P = 0.0003) in CD36 KO compared with WT mice. Hepatic HDL holo-particle uptake (¹²5I) decreased (-29%, P = 0.0038) in CD36 KO mice. In vitro, uptake of ¹²5I-/[³H]HDL by primary liver cells from WT or CD36 KO mice revealed a diminished HDL uptake in CD36-deficient hepatocytes. Adenovirus-mediated expression of CD36 in cells induced an increase in selective CE uptake from HDL and a stimulation of holo-particle internalization. In conclusion, CD36 plays a role in HDL uptake in mice and by cultured cells. A physiologic function of CD36 in HDL metabolism in vivo is suggested.


Assuntos
Antígenos CD36/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Antígenos CD36/genética , Linhagem Celular , Células Cultivadas , Ésteres do Colesterol/metabolismo , Hepatócitos/metabolismo , Immunoblotting , Camundongos , Camundongos Knockout
18.
J Lipid Res ; 52(11): 2021-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21856784

RESUMO

Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.


Assuntos
Álcoois/efeitos adversos , Ração Animal/efeitos adversos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Ceramidas/metabolismo , Endocanabinoides , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Alcamidas Poli-Insaturadas/metabolismo , Esfingolipídeos/metabolismo
19.
J Biol Chem ; 285(49): 37976-86, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20852327

RESUMO

Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36(-/-)), and double knock-out (hLpL0/Cd36(-/-)-DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.5 ± 3.8; hLpL0, 36.2 ± 3.5; Cd36(-/-), 57.7 ± 5.5 nmol/g, p < 0.05) and an additive effect was observed in the DKO (20.2 ± 1.4 nmol/g, p < 0.05). Myocardial VLDL-triglyceride (TG) uptake was reduced in the hLpL0 (31 ± 6%) and Cd36(-/-) (47 ± 4%) mice with an additive reduction in the DKO (64 ± 5%) compared with control. However, LpL but not CD36 deficiency decreased VLDL-cholesteryl ester uptake. Endogenously labeled mouse chylomicrons were produced by tamoxifen treatment of ß-actin-MerCreMer/LpL(flox/flox) mice. Induced loss of LpL increased TG levels >10-fold and reduced HDL by >50%. After injection of these labeled chylomicrons in the different mice, chylomicron TG uptake was reduced by ∼70% and retinyl ester by ∼50% in hLpL0 hearts. Loss of CD36 did not alter either chylomicron TG or retinyl ester uptake. LpL loss did not affect uptake of remnant lipoproteins from ApoE knock-out mice. Our data are consistent with two pathways for fatty acid uptake; a CD36 process for VLDL-derived fatty acid and a non-CD36 process for chylomicron-derived fatty acid uptake. In addition, our data show that lipolysis is involved in uptake of core lipids from TG-rich lipoproteins.


Assuntos
Antígenos CD36/metabolismo , VLDL-Colesterol/metabolismo , Quilomícrons/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/metabolismo , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Animais , Antineoplásicos Hormonais/farmacocinética , Antígenos CD36/genética , VLDL-Colesterol/genética , Quilomícrons/genética , Ácidos Graxos/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/genética , Lipoproteínas VLDL/genética , Camundongos , Camundongos Knockout , Tamoxifeno/farmacologia , Triglicerídeos/genética
20.
JMIR Mhealth Uhealth ; 9(12): e26356, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958306

RESUMO

BACKGROUND: Completion rates among adolescents who initiate the human papillomavirus (HPV) vaccine 3-dose series are low. SMS text message vaccine reminders are effective, but less is known about the best types for HPV series completion or the ability to assess and target vaccine decision-making stage. OBJECTIVE: The aim of this study is to compare the effectiveness of HPV vaccine series completion in minority adolescents who received precision and educational versus conventional SMS text message reminders. METHODS: Enrolled parents of adolescents aged 9-17 years who received the first HPV vaccine dose at 1 of the 4 academic-affiliated community health clinics in New York City were randomized 1:1 to 1 of the 2 parallel, unblinded arms: precision SMS text messages (which included stage-targeted educational information, next dose due date, and site-specific walk-in hours) or conventional SMS text messages without educational information. Randomization was stratified according to gender, age, and language. The primary outcome was series completion within 12 months. In post hoc analysis, enrollees were compared with concurrent nonenrollees and historical controls. RESULTS: Overall, 956 parents were enrolled in the study. The precision (475 families) and conventional (481 families) SMS text message arms had similarly high series completion rates (344/475, 72.4% vs 364/481, 75.7%). A total of 42 days after the first dose, two-thirds of families, not initially in the preparation stage, moved to preparation or vaccinated stage. Those in either SMS text message arm had significantly higher completion rates than nonenrollees (708/1503, 47.1% vs 679/1503, 45.17%; P<.001). Even after removing those needing only 2 HPV doses, adolescents receiving any SMS text messages had higher completion rates than historical controls (337/2823, 11.93% vs 981/2823, 34.75%; P<.001). A population-wide effect was seen from 2014 to 2016, above historical trends. CONCLUSIONS: SMS text message reminders led to timely HPV vaccine series completion in a low-income, urban, minority study population and also led to population-wide effects. Educational information did not provide an added benefit to this population. TRIAL REGISTRATION: ClinicalTrials.gov NCT02236273; https://clinicaltrials.gov/ct2/show/NCT02236273.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Adolescente , Humanos , Imunização , Sistemas de Alerta , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA