Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 43, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120442

RESUMO

BACKGROUND: Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS: M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS: Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.


Assuntos
Basidiomycota/genética , Variação Genética , Glicolipídeos/genética , Lipase/genética , Família Multigênica , Petróleo/microbiologia , Glicolipídeos/metabolismo , Lipase/classificação , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Trinidad e Tobago
2.
BMC Microbiol ; 21(1): 287, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670489

RESUMO

BACKGROUND: Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. METHODS: Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. RESULTS: 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. CONCLUSIONS: The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions.


Assuntos
Oxalobacteraceae/genética , Petróleo/metabolismo , Proteínas de Bactérias/genética , Variação Genética , Indóis , Lipase/genética , Oxalobacteraceae/classificação , Oxalobacteraceae/isolamento & purificação , Oxalobacteraceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Trinidad e Tobago
3.
Microorganisms ; 9(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071489

RESUMO

Trinidad and Tobago is the largest producer of oil and natural gas in Central America and the Caribbean. Natural crude oil seeps, in addition to leaking petroleum pipelines, have resulted in chronic contamination of the surrounding terrestrial environments since the time of petroleum discovery, production, and refinement in Trinidad. In this study, we isolated microbes from soils chronically contaminated with crude oil using a culture-dependent approach with enrichment. The sampling of eight such sites located in the southern peninsula of Trinidad revealed a diverse microbial composition and novel oil-degrading filamentous fungi and yeast as single-isolate degraders and naturally occurring consortia, with specific bacterial species not previously reported in the literature. Multiple sequence comparisons and phylogenetic analyses confirmed the identity of the top degraders. The filamentous fungal community based on culturable species was dominated by Ascomycota, and the recovered yeast isolates were affiliated with Basidiomycota (65.23%) and Ascomycota (34.78%) phyla. Enhanced biodegradation of petroleum hydrocarbons is maintained by biocatalysts such as lipases. Five out of seven species demonstrated extracellular lipase activity in vitro. Our findings could provide new insights into microbial resources from chronically contaminated terrestrial environments, and this information will be beneficial to the bioremediation of petroleum contamination and other industrial applications.

4.
Sci Rep ; 11(1): 19466, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593929

RESUMO

Mud volcanoes (MVs) are visible signs of oil and gas reserves present deep beneath land and sea. The Marac MV in Trinidad is the only MV associated with natural hydrocarbon seeps. Petrogenic polyaromatic hydrocarbons (PAHs) in its sediments must undergo biogeochemical cycles of detoxification as they can enter the water table and aquifers threatening ecosystems and biota. Recurrent hydrocarbon seep activity of MVs consolidates the growth of hydrocarbonoclastic fungal communities. Fungi possess advantageous metabolic and ecophysiological features for remediation but are underexplored compared to bacteria. Additionally, indigenous fungi are more efficient at PAH detoxification than commercial/foreign counterparts and remediation strategies remain site-specific. Few studies have focused on hydrocarbonoclastic fungal incidence and potential in MVs, an aspect that has not been explored in Trinidad. This study determined the unique biodiversity of culturable fungi from the Marac MV capable of metabolizing PAHs in vitro and investigated their extracellular peroxidase activity to utilize different substrates ergo their extracellular oxidoreductase activity (> 50% of the strains decolourized of methylene blue dye). Dothideomycetes and Eurotiomycetes (89% combined incidence) were predominantly isolated. ITS rDNA sequence cluster analysis confirmed strain identities. 18 indigenous hydrocarbonoclastic strains not previously reported in the literature and some of which were biosurfactant-producing, were identified. Intra-strain variability was apparent for PAH utilization, oil-tolerance and hydroxylase substrate specificity. Comparatively high levels of extracellular protein were detected for strains that demonstrated low substrate specificity. Halotolerant strains were also recovered which indicated marine-mixed substrata of the MV as a result of deep sea conduits. This work highlighted novel MV fungal strains as potential bioremediators and biocatalysts with a broad industrial applications.


Assuntos
Biotransformação , Fungos/isolamento & purificação , Fungos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodiversidade , DNA Fúngico/análise , DNA Ribossômico/análise , DNA Espaçador Ribossômico/análise , Enzimas , Fungos/enzimologia , Sedimentos Geológicos/microbiologia , Peroxidase , Petróleo , Salinidade , Análise de Sequência de DNA , Trinidad e Tobago
5.
Toxins (Basel) ; 12(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973043

RESUMO

Fusarium is among the top 10 most economically important plant pathogens in the world. Trichothecenes are the principal mycotoxins produced as secondary metabolites by select species of Fusarium and cause acute and chronic toxicity in animals and humans upon exposure either through consumption and/or contact. There are over 100 trichothecene metabolites and they can occur in a wide range of commodities that form food and feed products. This review discusses strategies to mitigate the risk of mycotoxin production and exposure by examining the Fusarium-trichothecene model. Fundamental to mitigation of risk is knowing the identity of the pathogen. As such, a comparison of current, recommended molecular approaches for sequence-based identification of Fusaria is presented, followed by an analysis of the rationale and methods of trichothecene (TRI) genotyping and chemotyping. This type of information confirms the source and nature of risk. While both are powerful tools for informing regulatory decisions, an assessment of the causes of incongruence between TRI genotyping and chemotyping data must be made. Reconciliation of this discordance will map the way forward in terms of optimization of molecular approaches, which includes data validation and sharing in the form of accessible repositories of genomic data and browsers for querying such data.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Genótipo , Metabolismo Secundário
6.
Toxins (Basel) ; 11(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646506

RESUMO

Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some Fusarium species depending on the host species. Although trichothecenes may differ in structure by their patterns of hydroxylation or acetylation, these small changes have a significant impact on toxicity and the biological activity of these compounds. Therefore, detecting and identifying which chemotype is present in a given population are important to predicting the specific toxins that may be produced and, therefore, to evaluating the risk of exposure. Due to the challenges of inducing trichothecene production by Fusarium isolates in vitro for subsequent chemical analysis, PCR assays using gene-specific primers, either singly or in combination, designed against specific genes of the trichothecene gene cluster of multiple species of Fusarium have been developed. The establishment of TRI genotypes that potentially correspond to a specific chemotype requires examination of an information and knowledge pipeline whose critical aspects in sequential order are: (i) understanding the TRI gene cluster organization which differs according to Fusarium species under study; (ii) knowledge of the re-arrangements to the core TRI gene cluster over evolutionary time, which also differs according to Fusarium species; (iii) the functions of the TRI genes in the biosynthesis of trichothecene analogs; and (iv) based on (i)⁻(iii), selection of appropriate target TRI gene(s) for primer design in PCR amplification for the Fusarium species under study. This review, therefore, explains this pipeline and its connection to utilizing TRI genotypes as a possible proxy to chemotype designation.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Genes Fúngicos , Tricotecenos/metabolismo , Fusarium/metabolismo , Genótipo , Família Multigênica
7.
Toxins (Basel) ; 11(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771208

RESUMO

Trichothecene mycotoxins are a class of secondary metabolites produced by multiple genera of fungi, including certain plant pathogenic Fusarium species. Functional variation in the TRI1 gene produces a novel Type A trichothecene called NX-2 in strains of F. graminearum. Using a bioinformatics approach, a systematic analysis of 52 translated TRI1 sequences of Fusarium species, including five F. graminearum NX-2 producers and four F. graminearum non-NX-2 producers, was conducted to explain the functional difference of TRI1p of FGNX-2. An assessment of several signature motifs of fungal P450s revealed amino acid substitutions in addition to the post-translational N-X-S/T sequons motif, which is indicative of N-linked glycosylation of this TRI1-encoded protein characteristic of NX-2 producers. There was evidence of selection bias, where TRI1 gene sequences were found to be under positive selection and, therefore, under functional constraints. The cumulative amino acid changes in the TRI1p sequences were reflected in the phylogenetic analyses which revealed species-specific clustering with a distinct separation of FGNX-2 from FG-non-NX-2 producers with high bootstrap support. Together, our findings provide insight into the amino acid sequence features responsible for the functional diversification of this TRI1p.


Assuntos
Fusarium/química , Micotoxinas/química , Sequência de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Heme/química , Micotoxinas/genética , Filogenia , Processamento de Proteína Pós-Traducional , Especificidade da Espécie
8.
Ecol Evol ; 7(18): 7311-7333, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944019

RESUMO

The islands of the Caribbean are considered to be a "biodiversity hotspot." Collectively, a high level of endemism for several plant groups has been reported for this region. Biodiversity conservation should, in part, be informed by taxonomy, population status, and distribution of flora. One taxonomic impediment to species inventory and management is correct identification as conventional morphology-based assessment is subject to several caveats. DNA barcoding can be a useful tool to quickly and accurately identify species and has the potential to prompt the discovery of new species. In this study, the ability of DNA barcoding to confirm the identities of 14 endangered endemic vascular plant species in Trinidad was assessed using three DNA barcodes (matK, rbcL, and rpoC1). Herbarium identifications were previously made for all species under study. matK, rbcL, and rpoC1 markers were successful in amplifying target regions for seven of the 14 species. rpoC1 sequences required extensive editing and were unusable. rbcL primers resulted in cleanest reads, however, matK appeared to be superior to rbcL based on a number of parameters assessed including level of DNA polymorphism in the sequences, genetic distance, reference library coverage based on BLASTN statistics, direct sequence comparisons within "best match" and "best close match" criteria, and finally, degree of clustering with moderate to strong bootstrap support (>60%) in neighbor-joining tree-based comparisons. The performance of both markers seemed to be species-specific based on the parameters examined. Overall, the Trinidad sequences were accurately identified to the genus level for all endemic plant species successfully amplified and sequenced using both matK and rbcL markers. DNA barcoding can contribute to taxonomic and biodiversity research and will complement efforts to select taxa for various molecular ecology and population genetics studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA