Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6286, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271076

RESUMO

A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Sistemas CRISPR-Cas , Neurônios Motores/metabolismo , Dipeptídeos/metabolismo , RNA/metabolismo
2.
Brain Sci ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34827542

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport "biosensors", composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype-persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects-resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.

3.
Front Genet ; 11: 610386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584810

RESUMO

Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage-the principal driver of genome instability-was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the "breakome" in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.

4.
Mol Neurodegener ; 15(1): 13, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093728

RESUMO

BACKGROUND: The C9ORF72 hexanucleotide repeat expansion is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal age-related neurodegenerative diseases. The C9ORF72 expansion encodes five dipeptide repeat proteins (DPRs) that are produced through a non-canonical translation mechanism. Among the DPRs, proline-arginine (PR), glycine-arginine (GR), and glycine-alanine (GA) are the most neurotoxic and increase the frequency of DNA double strand breaks (DSBs). While the accumulation of these genotoxic lesions is increasingly recognized as a feature of disease, the mechanism(s) of DPR-mediated DNA damage are ill-defined and the effect of DPRs on the efficiency of each DNA DSB repair pathways has not been previously evaluated. METHODS AND RESULTS: Using DNA DSB repair assays, we evaluated the efficiency of specific repair pathways, and found that PR, GR and GA decrease the efficiency of non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ), but not homologous recombination (HR). We found that PR inhibits DNA DSB repair, in part, by binding to the nucleolar protein nucleophosmin (NPM1). Depletion of NPM1 inhibited NHEJ and SSA, suggesting that NPM1 loss-of-function in PR expressing cells leads to impediments of both non-homologous and homology-directed DNA DSB repair pathways. By deleting NPM1 sub-cellular localization signals, we found that PR binds NPM1 regardless of the cellular compartment to which NPM1 was directed. Deletion of the NPM1 acidic loop motif, known to engage other arginine-rich proteins, abrogated PR and NPM1 binding. Using confocal and super-resolution immunofluorescence microscopy, we found that levels of RAD52, a component of the SSA repair machinery, were significantly increased iPSC neurons relative to isogenic controls in which the C9ORF72 expansion had been deleted using CRISPR/Cas9 genome editing. Western analysis of post-mortem brain tissues confirmed that RAD52 immunoreactivity is significantly increased in C9ALS/FTD samples as compared to controls. CONCLUSIONS: Collectively, we characterized the inhibitory effects of DPRs on key DNA DSB repair pathways, identified NPM1 as a facilitator of DNA repair that is inhibited by PR, and revealed deficits in homology-directed DNA DSB repair pathways as a novel feature of C9ORF72-related disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Demência Frontotemporal/genética , Proteínas Nucleares/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular , Expansão das Repetições de DNA/genética , Dipeptídeos , Demência Frontotemporal/metabolismo , Humanos , Nucleofosmina
5.
Brain Behav ; 9(12): e01413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568680

RESUMO

INTRODUCTION: Emotional and behavioral control is necessary self-regulatory processes to maintain stable goal-driven behavior. Studies indicate that variance in these executive function (EF) processes is related to morphological features of the brain and white matter (WM) differences. Furthermore, sex hormone level may modulate circuits in the brain important for cognitive function. METHODS: We aimed to investigate the structural neural correlates of EF behavior in gray matter (GM) and WM while taking into account estradiol level, in an adolescent population. The present study obtained neuroimaging behavioral and physiological data from the National Institute of Health's Pediatric Database (NIHPD). We analyzed the relationship between cortical morphometry and structural connectivity (N = 55), using a parent-administered behavioral monitoring instrument (Behavior Rating Inventory of Executive Function-BRIEF), estradiol level, as well as their interaction. RESULTS: Executive function behavior and estradiol level related to bidirectional associations with cortical morphometry in the right posterior dorsolateral prefrontal cortex (pDLPFC) and primary motor cortex (PMC), as well as fractional anisotropy (FA) in the forceps major and minor. Lastly, the interaction of EF behavior and estradiol level related to decreased volume in the right PMC and was linked to altered FA in the right inferior fronto-occipital fasciculus (iFOF). CONCLUSIONS: The study provides evidence that the relationship between EF behavior and estradiol level related to bidirectional GM and WM differences, implying estradiol level has an influence on the putative structural regions underlying EF behavior. The findings represent a crucial link between EF behavior and hormonal influence on brain structure in adolescence.


Assuntos
Estradiol/metabolismo , Função Executiva/fisiologia , Substância Branca/fisiologia , Adolescente , Anisotropia , Criança , Feminino , Substância Cinzenta/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Córtex Motor/fisiologia , Condução Nervosa/fisiologia , Neuroimagem/métodos , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA