Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1049-L1060, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892080

RESUMO

Cellular senescence is a biological process by which cells lose their capacity to proliferate yet remain metabolically active. Although originally considered a protective mechanism to limit the formation of cancer, it is now appreciated that cellular senescence also contributes to the development of disease, including common respiratory ailments such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. While many factors have been linked to the development of cellular senescence, mitochondrial dysfunction has emerged as an important causative factor. In this study, we uncovered that the mitochondrial biogenesis pathway driven by the mammalian target of rapamycin/peroxisome proliferator-activated receptor-γ complex 1α/ß (mTOR/PGC-1α/ß) axis is markedly upregulated in senescent lung epithelial cells. Using two different models, we show that activation of this pathway is associated with other features characteristic of enhanced mitochondrial biogenesis, including elevated number of mitochondrion per cell, increased oxidative phosphorylation, and augmented mitochondrial reactive oxygen species (ROS) production. Furthermore, we found that pharmacological inhibition of the mTORC1 complex with rapamycin not only restored mitochondrial homeostasis but also reduced cellular senescence to bleomycin in lung epithelial cells. Likewise, mitochondrial-specific antioxidant therapy also effectively inhibited mTORC1 activation in these cells while concomitantly reducing mitochondrial biogenesis and cellular senescence. In summary, this study provides a mechanistic link between mitochondrial biogenesis and cellular senescence in lung epithelium and suggests that strategies aimed at blocking the mTORC1/PGC-1α/ß axis or reducing ROS-induced molecular damage could be effective in the treatment of senescence-associated lung diseases.


Assuntos
Senescência Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bleomicina/farmacologia , Linhagem Celular , Fibrose Pulmonar Idiopática/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/citologia , Sirolimo/farmacologia
2.
Am J Respir Cell Mol Biol ; 55(3): 407-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27064756

RESUMO

Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Transdução de Sinais , Animais , Quimiocina CXCL2/biossíntese , Condutividade Elétrica , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Pneumonia Pneumocócica/genética , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/fisiologia
3.
Exp Cell Res ; 335(1): 115-22, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25959509

RESUMO

Podoplanin (PDPN) is a transmembrane glycoprotein that promotes tumor cell migration, invasion, and cancer metastasis. In fact, PDPN expression is induced in many types of cancer. Thus, PDPN has emerged as a functionally relevant cancer biomarker and chemotherapeutic target. PDPN contains 2 intracellular serine residues that are conserved between species ranging from mouse to humans. Recent studies indicate that protein kinase A (PKA) can phosphorylate PDPN in order to inhibit cell migration. However, the number and identification of specific residues phosphorylated by PKA have not been defined. In addition, roles of other kinases that may phosphorylate PDPN to control cell migration have not been investigated. We report here that cyclin dependent kinase 5 (CDK5) can phosphorylate PDPN in addition to PKA. Moreover, results from this study indicate that PKA and CDK5 cooperate to phosphorylate PDPN on both intracellular serine residues to decrease cell motility. These results provide new insight into PDPN phosphorylation dynamics and the role of PDPN in cell motility. Understanding novel mechanisms of PDPN intracellular signaling could assist with designing novel targeted chemotherapeutic agents and procedures.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glicoproteínas de Membrana/genética , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Serina/genética
4.
Respir Res ; 16: 22, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25763778

RESUMO

BACKGROUND: The transcription factor NK2 homeobox 1 (Nkx2-1) plays essential roles in epithelial cell proliferation and differentiation in mouse and human lung development and tumorigenesis. A better understanding of genes and pathways downstream of Nkx2-1 will clarify the multiple roles of this critical lung factor. Nkx2-1 regulates directly or indirectly numerous protein-coding genes; however, there is a paucity of information about Nkx2-1-regulated microRNAs (miRNAs). METHODS AND RESULTS: By miRNA array analyses of mouse epithelial cell lines in which endogenous Nkx2-1 was knocked-down, we revealed that 29 miRNAs were negatively regulated including miR-200c, and 39 miRNAs were positively regulated by Nkx2-1 including miR-1195. Mouse lungs lacking functional phosphorylated Nkx2-1 showed increased expression of miR-200c and alterations in the expression of other top regulated miRNAs. Moreover, chromatin immunoprecipitation assays showed binding of NKX2-1 protein to regulatory regions of these miRNAs. Promoter reporter assays indicated that 1kb of the miR-200c 5' flanking region was transcriptionally active but did not mediate Nkx2-1- repression of miR-200c expression. 3'UTR reporter assays support a direct regulation of the predicted targets Nfib and Myb by miR-200c. CONCLUSIONS: These studies suggest that Nkx2-1 controls the expression of specific miRNAs in lung epithelial cells. In particular, we identified a regulatory link between Nkx2-1, the known tumor suppressor miR-200c, and the developmental and oncogenic transcription factors Nfib and Myb, adding new players to the regulatory mechanisms driven by Nkx2-1 in lung epithelial cells that may have implications in lung development and tumorigenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas v-myb/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Região 5'-Flanqueadora , Animais , Sítios de Ligação , Linhagem Celular , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Oncogênicas v-myb/genética , Fosforilação , Regiões Promotoras Genéticas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção
5.
J Biol Chem ; 288(17): 12215-21, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23530051

RESUMO

Podoplanin (PDPN) is a transmembrane receptor that affects the activities of Rho, ezrin, and other proteins to promote tumor cell motility, invasion, and metastasis. PDPN is found in many types of cancer and may serve as a tumor biomarker and chemotherapeutic target. The intracellular region of PDPN contains only two serines, and these are conserved in mammals including mice and humans. We generated cells from the embryos of homozygous null Pdpn knock-out mice to investigate the relevance of these serines to cell growth and migration on a clear (PDPN-free) background. We report here that one or both of these serines can be phosphorylated by PKA (protein kinase A). We also report that conversion of these serines to nonphosphorylatable alanine residues enhances cell migration, whereas their conversion to phosphomimetic aspartate residues decreases cell migration. These results indicate that PKA can phosphorylate PDPN to decrease cell migration. In addition, we report that PDPN expression in fibroblasts causes them to facilitate the motility and viability of neighboring melanoma cells in coculture. These findings shed new light on how PDPN promotes cell motility, its role in tumorigenesis, and its utility as a functionally relevant biomarker and chemotherapeutic target.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Fibroblastos/patologia , Melanoma/genética , Melanoma/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosforilação/genética , Serina/genética , Serina/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L405-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24375798

RESUMO

Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , Mucosa Respiratória/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Mesoderma/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Gravidez , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética
7.
J Immunol ; 189(5): 2450-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844121

RESUMO

Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and meet anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Because innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we generated a murine model of RelA mutated throughout the alveolar epithelium. In response to LPS, only 2 of 84 cytokine transcripts (CCL20 and CXCL5) were blunted in lungs of mutants, suggesting that a very limited subset of immune mediators is selectively elaborated by the alveolar epithelium. Lung CCL20 induction required epithelial RelA regardless of stimulus, whereas lung CXCL5 expression depended on RelA after instillation of LPS but not pneumococcus. RelA knockdown in vitro suggested that CXCL5 induction required RelA in type II cells but not type I cells. Sorted cell populations from mouse lungs revealed that CXCL5 was induced during pneumonia in type I cells, which did not require RelA. TLR2 and STING were also induced in type I cells, with RelA essential for TLR2 but not STING. To our knowledge, these data are the first direct demonstration that type I cells, which constitute the majority of the alveolar surface, mount innate immune responses during bacterial infection. These are also, to our knowledge, the first evidence for entirely RelA-independent pathways of innate immunity gene induction in any cell during pneumonia.


Assuntos
Imunidade Inata , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Animais , Imunidade Inata/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Pneumonia Pneumocócica/genética , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Streptococcus pneumoniae/imunologia , Fator de Transcrição RelA/deficiência , Fator de Transcrição RelA/genética , Ativação Transcricional/imunologia
8.
J Biol Chem ; 287(44): 37282-95, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22955271

RESUMO

The Grainyhead family of transcription factors controls morphogenesis and differentiation of epithelial cell layers in multicellular organisms by regulating cell junction- and proliferation-related genes. Grainyhead-like 2 (Grhl2) is expressed in developing mouse lung epithelium and is required for normal lung organogenesis. The specific epithelial cells expressing Grhl2 and the genes regulated by Grhl2 in normal lungs are mostly unknown. In these studies we identified the NK2-homeobox 1 transcription factor (Nkx2-1) as a direct transcriptional target of Grhl2. By binding and transcriptional assays and by confocal microscopy we showed that these two transcription factors form a positive feedback loop in vivo and in cell lines and are co-expressed in lung bronchiolar and alveolar type II cells. The morphological changes observed in flattening lung alveolar type II cells in culture are associated with down-regulation of Grhl2 and Nkx2-1. Reduction of Grhl2 in lung epithelial cell lines results in lower expression levels of Nkx2-1 and of known Grhl2 target genes. By microarray analysis we identified that in addition to Cadherin1 and Claudin4, Grhl2 regulates other cell interaction genes such as semaphorins and their receptors, which also play a functional role in developing lung epithelium. Impaired collective cell migration observed in Grhl2 knockdown cell monolayers is associated with reduced expression of these genes and may contribute to the altered epithelial phenotype reported in Grhl2 mutant mice. Thus, Grhl2 functions at the nexus of a novel regulatory network, connecting lung epithelial cell identity, migration, and cell-cell interactions.


Assuntos
Células Epiteliais Alveolares/fisiologia , Diferenciação Celular , Morfogênese , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Forma Celular , Imunoprecipitação da Cromatina , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Pulmão/citologia , Pulmão/embriologia , Camundongos , Proteínas Nucleares/genética , Faloidina/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Ativação Transcricional , Transcriptoma
9.
J Biol Chem ; 285(3): 2152-64, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19906647

RESUMO

Epigenetic regulation of transcription plays an important role in cell-specific gene expression by altering chromatin structure and access of transcriptional regulators to DNA binding sites. Surfactant protein B (Sftpb) is a developmentally regulated lung epithelial gene critical for lung function. Thyroid transcription factor 1 (Nkx2-1) regulates Sftpb gene expression in various species. We show that Nkx2-1 binds to the mouse Sftpb (mSftpb) promoter in the lung. In a mouse lung epithelial cell line (MLE-15), Nkx2-1 knockdown reduces Sftpb expression, and mutation of Nkx2-1 cis-elements significantly reduces mSftpb promoter activity. Whether chromatin structure modulates Nkx2-1 regulation of Sftpb transcription is unknown. We found that DNA methylation of the mSftpb promoter inversely correlates with known patterns of Sftpb expression in vivo. The mSftpb promoter activity can be manipulated by altering its cytosine methylation status in vitro. Nkx2-1 activation of the mSftpb promoter is impaired by DNA methylation. The unmethylated Sftpb promoter shows an active chromatin structure enriched in the histone modification H3K4me3 (histone 3-lysine 4 trimethylated). The ATP-dependent chromatin remodeling protein Brg1 is recruited to the Sftpb promoter in Sftpb-expressing, but not in non-expressing tissues and cell lines. Brg1 knockdown in MLE-15 cells greatly decreases H3K4me3 levels at the Sftpb promoter region and expression of the Sftpb gene. Brg1 can be co-immunoprecipitated with Nkx2-1 protein. Last, Nkx2-1 and Brg1 with intact ATPase activity are required for mSftpb promoter activation in vitro. Our findings suggest that DNA methylation and chromatin modifications cooperate with Nkx2-1 to regulate Sftpb gene cell specific expression.


Assuntos
Epigênese Genética , Proteínas Nucleares/metabolismo , Proteína B Associada a Surfactante Pulmonar/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular , Cromatina/metabolismo , Ilhas de CpG/genética , DNA Helicases/metabolismo , Metilação de DNA , Decitabina , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/citologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Ratos , Fator Nuclear 1 de Tireoide , Ativação Transcricional/efeitos dos fármacos
10.
J Clin Invest ; 118(11): 3725-37, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18924607

RESUMO

Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice). EHC T-syn(-/-) mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn(-/-) mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn(-/-) lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn(-/-) defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn(-/-) mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn(-/-) pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.


Assuntos
Células Endoteliais/imunologia , Fígado Gorduroso/imunologia , Galactosiltransferases/deficiência , Vasos Linfáticos/imunologia , Microvasos/imunologia , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Fígado Gorduroso/metabolismo , Galactosiltransferases/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microvasos/metabolismo , Microvasos/ultraestrutura , Transgenes
11.
Carcinogenesis ; 30(8): 1433-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19483189

RESUMO

Caveolin-1 protein has been called a 'conditional tumor suppressor' because it can either suppress or enhance tumor progression depending on cellular context. Caveolin-1 levels are dynamic in non-small-cell lung cancer, with increased levels in metastatic tumor cells. We have shown previously that transactivation of an erythroblastosis virus-transforming sequence (ETS) cis-element enhances caveolin-1 expression in a murine lung epithelial cell line. Based on high sequence homology between the murine and human caveolin-1 promoters, we proposed that ETS proteins might regulate caveolin-1 expression in human lung tumorigenesis. We confirm that caveolin-1 is not detected in well-differentiated primary lung tumors. Polyoma virus enhancer activator 3 (PEA3), a pro-metastatic ETS protein in breast cancer, is expressed at low levels in well-differentiated tumors and high levels in poorly differentiated tumors. Conversely, Net, a known ETS repressor, is expressed at high levels in the nucleus of well-differentiated primary tumor cells. In tumor cells in metastatic lymph node sites, caveolin-1 and PEA3 are highly expressed, whereas Net is now expressed in the cytoplasm. We studied transcriptional regulation of caveolin-1 in two human lung cancer cell lines, Calu-1 (high caveolin-1 expressing) and NCI-H23 (low caveolin-1 expressing). Chromatin immunoprecipitation-binding assays and small interfering RNA experiments show that PEA3 is a transcriptional activator in Calu-1 cells and that Net is a transcriptional repressor in NCI-H23 cells. These results suggest that Net may suppress caveolin-1 transcription in primary lung tumors and that PEA3 may activate caveolin-1 transcription in metastatic lymph nodes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Caveolina 1/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Linfática , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-ets , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Células Tumorais Cultivadas
12.
Gene Expr Patterns ; 8(2): 124-39, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18023262

RESUMO

To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.


Assuntos
Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Perfilação da Expressão Gênica , Pulmão/embriologia , Pulmão/metabolismo , Animais , Sistema Digestório/citologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/citologia , Camundongos , Modelos Biológicos , Organogênese , Gravidez
13.
Sci Rep ; 8(1): 14418, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258080

RESUMO

The function of most long noncoding RNAs (lncRNAs) is unknown. However, recent studies reveal important roles of lncRNAs in regulating cancer-related pathways. Human antisense lncRNA-NKX2-1-AS1 partially overlaps the NKX2-1/TTF1 gene within chromosomal region 14q13.3. Amplification of this region and/or differential expression of genes therein are associated with cancer progression. Herein we show higher levels of NKX2-AS1 and NKX2-1 in lung adenocarcinomas relative to non-tumor controls but no correlation between NKX2-1-AS1 and NKX2-1 levels across specimens, or with amplification of the 14q13.3 region, suggesting that NKX2-1-AS1 and NKX2-1 are independently regulated. Loss-and-gain of function experiments showed that NKX2-1-AS1 does not regulate NKX2-1 expression, or nearby genes, but controls genes in trans. Genes up-regulated by NKX2-1-AS1-knockdown belong to cell adhesion and PD-L1/PD-1 checkpoint pathways. NKX2-1-AS1 negatively regulates endogenous CD274/PD-L1, a known target of NKX2-1, and the transcriptional activity of -1kb-CD274 promoter-reporter construct. Furthermore, NKX2-1-AS1 interferes with NKX2-1 protein binding to the CD274-promoter, likely by NKX2-1 protein-NKX2-1-AS1 interactions. Finally, NKX2-1-AS1 negatively regulates cell migration and wound healing, but not proliferation or apoptosis. These findings support potential roles of NKX2-1-AS1 in limiting motility and immune system evasion of lung carcinoma cells, highlighting a novel mechanism that may influence tumorigenic capabilities of lung epithelial cells.


Assuntos
Antígeno B7-H1/metabolismo , Movimento Celular , Proteínas de Neoplasias/metabolismo , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Fator Nuclear 1 de Tireoide/genética
14.
Clin Exp Metastasis ; 35(3): 149-165, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29909489

RESUMO

Distinct members of the Ets family of transcription factors act as positive or negative regulators of genes involved in cellular proliferation, development, and tumorigenesis. In human lung cancer, increased ETS1 expression is associated with poor prognosis and metastasis. We tested whether ETS1 contributes to lung tumorigenesis by binding to Twist1, a gene involved in tumor cell motility and dissemination. We used a mouse lung cancer model with metastasis driven by conditionally activated Kras and concurrent tumor suppressor Lkb1 loss (KrasG12D/ Lkb1-/- model) and a similar model of lung cancer that does not metastasize, driven by conditionally activated Kras alone (KrasG12D model). We show that Ets1 and Twist1 gene expression differs between KrasG12D tumors (low Ets1 and Twist1 expression) and KrasG12D/Lkb1-/- tumors (high Ets1 and Twist1 expression). In human lung tumors, ETS1 and TWIST1 expression positively correlates and low combined ETS1 and TWIST1 levels are associated with improved survival compared to high levels. Using mouse cell lines derived from KrasG12D and KrasG12D/Lkb1-/- mouse models and the human lung cancer (A549) cell line, we show that ETS1 regulates Twist1 expression. Chromatin immunoprecipitation assays confirm binding of ETS1 to the Twist1 promoter. Overexpression studies show that ETS1 transactivates Twist1 promoter activity in mouse and human cells. Silencing endogenous Ets1 by siRNA in mouse cell lines decreases Twist1 mRNA levels, decreases invasion, and increases cell growth. Ets1 and Twist1 are at the crossroad of several signaling pathways in cancer. Understanding their regulation may inform the development of therapies to impair lung tumor metastasis.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína 1 Relacionada a Twist/genética , Proteínas Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
15.
BMC Dev Biol ; 6: 35, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16869965

RESUMO

BACKGROUND: Development of lung alveolar sacs of normal structure and size at late gestation is necessary for the gas exchange process that sustains respiration at birth. Mice lacking the lung differentiation gene T1alpha [T1alpha(-/-)] fail to form expanded alveolar sacs, resulting in respiratory failure at birth. Since little is known about the molecular pathways driving alveolar sacculation, we used expression microarrays to identify genes altered in the abnormal lungs and, by inference, may play roles in normal lung morphogenesis. RESULTS: Altered expression of genes related to cell-cell interaction, such as ephrinA3, are observed in T1alpha(-/-) at E18.5. At term, FosB, Egr1, MPK-1 and Nur77, which can function as negative regulators of the cell-cycle, are down-regulated. This is consistent with the hyperproliferation of peripheral lung cells in term T1alpha (-/-) lungs reported earlier. Biochemical assays show that neither PCNA nor p21 are altered at E18.5. At term in contrast, PCNA is increased, and p21 is decreased. CONCLUSION: This global analysis has identified a number of candidate genes that are significantly altered in lungs in which sacculation is abnormal. Many genes identified were not previously associated with lung development and may participate in formation of alveolar sacs prenatally.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Alvéolos Pulmonares/embriologia , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Pulmão/citologia , Pulmão/embriologia , Pulmão/patologia , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Análise Serial de Proteínas/métodos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia
16.
Stem Cell Reports ; 4(5): 873-85, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25843048

RESUMO

Induced pluripotent stem cells (iPSCs) provide an inexhaustible source of cells for modeling disease and testing drugs. Here we develop a bioinformatic approach to detect differences between the genomic programs of iPSCs derived from diseased versus normal human cohorts as they emerge during in vitro directed differentiation. Using iPSCs generated from a cohort carrying mutations (PiZZ) in the gene responsible for alpha-1 antitrypsin (AAT) deficiency, we find that the global transcriptomes of PiZZ iPSCs diverge from normal controls upon differentiation to hepatic cells. Expression of 135 genes distinguishes PiZZ iPSC-hepatic cells, providing potential clues to liver disease pathogenesis. The disease-specific cells display intracellular accumulation of mutant AAT protein, resulting in increased autophagic flux. Furthermore, we detect beneficial responses to the drug carbamazepine, which further augments autophagic flux, but adverse responses to known hepatotoxic drugs. Our findings support the utility of iPSCs as tools for drug development or prediction of toxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , alfa 1-Antitripsina/metabolismo , Alelos , Autofagia/efeitos dos fármacos , Carbamazepina/toxicidade , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Epigenômica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , alfa 1-Antitripsina/análise , alfa 1-Antitripsina/genética
17.
J Histochem Cytochem ; 50(1): 33-42, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11748292

RESUMO

Caveolin-1 is a scaffolding protein component of caveolae, membrane invaginations involved in endocytosis, signal transduction, trans- and intracellular trafficking, and protein sorting. In adult lung, caveolae and caveolin-1 are present in alveolar endothelium and Type I epithelial cells but rarely in Type II cells. We have analyzed patterns of caveolin-1 expression during mouse lung development. Two caveolin-1 mRNAs, full-length and a 5' variant that will translate mainly into caveolin-1alpha and -beta isoforms, are detected by RT-PCR at embryonic day 12 (E12) and afterwards in the developing and adult lung. Immunostaining analysis, starting at E10, shows caveolin-1alpha localized in primitive blood vessels of the forming lung, in an overlapping pattern to the endothelial marker PECAM-1, and later in all blood vessels. Caveolin-1alpha is not detected in fetal or neonatal lung epithelium but is detected in adult epithelial Type I cells. Caveolin-1 was previously shown to be expressed in alveolar Type I cells. These data suggest that expression of caveolin-1 isoforms is differentially regulated in endothelial and epithelial cells during lung development. Caveolin-1alpha is an early marker for lung vasculogenesis, primarily expressed in developing blood vessels. When the lung is fully differentiated postnatally, caveolin-1alpha is also expressed in alveolar Type I cells.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Caveolinas/metabolismo , Pulmão/irrigação sanguínea , Pulmão/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Biomarcadores , Vasos Sanguíneos/embriologia , Western Blotting , Caveolina 1 , Caveolinas/genética , Endotélio Vascular/embriologia , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Idade Gestacional , Imuno-Histoquímica , Pulmão/embriologia , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Isoformas de Proteínas , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Psychosom Med ; 66(5): 788-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15385708

RESUMO

OBJECTIVE: The purpose of this study was to verify whether stress worsens the clinical symptomatology perceived by patients with lupus erythematosus. Toward this end, we considered two types of stressors-daily stress and high-intensity stressful life events. METHODS: In 46 patients with systemic lupus erythematosus and 12 patients with chronic lupus discoid, we studied the stress they experienced daily for 6 months and their disease symptoms. During this period, we also analyzed the levels of C3 and C4 complements and anti-DNAn antibodies. The systemic lupus erythematosus activity (assessed by the Systemic Lupus Activity Measures) and cumulative organ damage (assessed by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index) were also analyzed. RESULTS: We did not find that high-intensity stressful life events produced a worsening of the symptomatology of the disease. However, using a time-series analysis (Box-Jenkins), we found that a high percentage of lupus patients (74.1%) perceived a worsening in their clinical symptomatology due to the effects of daily stress. Of this 74.1%, 53.4% worsened the same day they suffered the perceived daily stress, and the remaining 20.7% experienced an increase in symptoms both the same day and the following day. Subsequent Mann-Whitney analyses showed that the patients who worsened for 2 days because of the effects of stress had greater lupus activity, as evaluated by their levels of C3, C4, and anti-DNAn. CONCLUSION: Daily stress, and not stressful life events, worsened the clinical symptomatology perceived by lupus erythematosus patients. This increase extended at times to 2 days, and was associated with greater lupic activity.


Assuntos
Nível de Saúde , Acontecimentos que Mudam a Vida , Lúpus Eritematoso Discoide/diagnóstico , Lúpus Eritematoso Sistêmico/diagnóstico , Estresse Psicológico/diagnóstico , Adulto , Anticorpos Antinucleares/imunologia , Complemento C3/imunologia , Complemento C4/imunologia , Feminino , Humanos , Lúpus Eritematoso Discoide/imunologia , Lúpus Eritematoso Discoide/psicologia , Lúpus Eritematoso Sistêmico/psicologia , Masculino , Inventário de Personalidade , Índice de Gravidade de Doença , Estresse Psicológico/imunologia , Estresse Psicológico/psicologia
19.
PLoS One ; 7(1): e29907, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242187

RESUMO

The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Pulmão/embriologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/genética , Proliferação de Células , Imunoprecipitação da Cromatina , Sequência Conservada , Regulação para Baixo/genética , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Ligação Proteica/genética , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
20.
Cell Stem Cell ; 10(4): 398-411, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482505

RESUMO

Two populations of Nkx2-1(+) progenitors in the developing foregut endoderm give rise to the entire postnatal lung and thyroid epithelium, but little is known about these cells because they are difficult to isolate in a pure form. We demonstrate here the purification and directed differentiation of primordial lung and thyroid progenitors derived from mouse embryonic stem cells (ESCs). Inhibition of TGFß and BMP signaling, followed by combinatorial stimulation of BMP and FGF signaling, can specify these cells efficiently from definitive endodermal precursors. When derived using Nkx2-1(GFP) knockin reporter ESCs, these progenitors can be purified for expansion in culture and have a transcriptome that overlaps with developing lung epithelium. Upon induction, they can express a broad repertoire of markers indicative of lung and thyroid lineages and can recellularize a 3D lung tissue scaffold. Thus, we have derived a pure population of progenitors able to recapitulate the developmental milestones of lung/thyroid development.


Assuntos
Separação Celular , Células-Tronco Embrionárias/citologia , Pulmão/citologia , Glândula Tireoide/citologia , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Glândula Tireoide/embriologia , Glândula Tireoide/metabolismo , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA