Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Xenotransplantation ; 28(1): e12646, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945050

RESUMO

BACKGROUND: The present study reports the development of a sensitive dot blot protocol for determining the level of preformed antibodies against porcine heart valve tissue derived from wild-type (WT) and α-Gal-KO (GGTA1-KO) pigs in human sera. METHODS: The assay uses decellularized and solubilized heart valve tissue; antibody binding found in this dot blot assay could be correlated with antibody titers of preformed anti-α-Gal and anti-Neu5Gc antibodies detected by a sensitive ELISA. RESULTS: The ultimate protocol had an inter-assay variance of 9.5% and an intra-assay variance of 9.2%, showing that the test is reliable and highly reproducible. With the aid of this dot blot assay, we found significant variation with regard to antibody contents among twelve human sera. Binding of preformed antibodies to WT tissue was significantly higher than to GGTA1-KO tissue. CONCLUSIONS: The dot blot assay described herein could be a valuable tool to measure preformed antibody levels in human sera against unknown epitopes on decellularized tissue prior to implantation. Ultimately, this prescreening may allow a matching of the porcine xenograft with the respective human recipients in demand and thus may become an important tool for graft long-term survival similar to current allotransplantation settings.


Assuntos
Bioprótese , Animais , Epitopos , Matriz Extracelular , Valvas Cardíacas , Humanos , Suínos , Transplante Heterólogo
2.
Xenotransplantation ; 27(2): e12565, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692126

RESUMO

BACKGROUND: Decellularized human pulmonary heart valve (dhHV) scaffolds have been shown to be the gold standard especially for younger, adolescent patients. However, human heart valves are limited in availability. Xenogeneic decellularized pig heart valves (dpHV) may serve as alternative. METHODS: The efficacy of DNA reduction processes upon decellularization of heart valves from German Landrace pigs was analyzed by measurements of remaining nucleic acids including proviral porcine endogenous retrovirus (PERV) sequences. Porcine pulmonary heart valves (pPHV) were decellularized by three different protocols and further treated with DNaseI or Benzonase, at varying incubation times. DNA isolated from valve associated muscle (m), valve cusp (c), and pulmonary artery (pa) was monitored by PCR and qRT-PCR using GAPDH and the PERV polymerase (pol) for read-out. RESULTS: Decellularization of pPHV led to a significant reduction of DNA (>99%) which could be further significantly increased for (m) and (pa) by nuclease treatment, reducing proviral PERV pol from approximately 5 × 107 to 5 × 103  copies/mg in nuclease treated tissues. CONCLUSIONS: Both nucleases demonstrated comparable activities. But DNaseI revealed to be less consistent for PERV, especially at muscular tissue. Noteworthy, remaining proviral sequences are still detectable by PCR; however, due to the absence of the cellular replication machinery the production of infectious particles is not expected. Decellularization and nuclease treatment of pPHV is an efficient procedure to reduce the DNA content including PERV, thus represents a valuable option to increase virus safety independently from the source animal background.


Assuntos
Retrovirus Endógenos/patogenicidade , Próteses Valvulares Cardíacas/virologia , Valvas Cardíacas/patologia , Ácidos Nucleicos/metabolismo , Provírus/patogenicidade , Animais , Bioprótese/efeitos adversos , Linhagem Celular , Suínos , Transplante Heterólogo/efeitos adversos
3.
Xenotransplantation ; 27(5): e12617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557876

RESUMO

The use of decellularized xenogeneic heart valves might offer a solution to overcome the issue of human valve shortage. The aim of this study was to revise decellularization protocols in combination with enzymatic deglycosylation, in order to reduce the immunogenicity of porcine pulmonary heart valves, in means of cells, carbohydrates, and, primarily, Galα1-3Gal (α-Gal) epitope removal. In particular, the valves were decellularized with sodium dodecylsulfate/sodium deoxycholate (SDS/SD), Triton X-100 + SDS (Tx + SDS), or Trypsin + Triton X-100 (Tryp + Tx) followed by enzymatic digestion with PNGaseF, Endoglycosidase H, or O-glycosidase combined with Neuraminidase. Results showed that decellularization alone reduced carbohydrate structures only to a limited extent, and it did not result in an α-Gal free scaffold. Nevertheless, decellularization with Tryp + Tx represented the most effective decellularization protocol in means of carbohydrates reduction. Overall, carbohydrates and α-Gal removal could strongly be improved by applying PNGaseF, in particular in combination with Tryp + Tx treatment, contrary to Endoglycosidase H and O-glycosidase treatments. Furthermore, decellularization with PNGaseF did not affect biomechanical stability, in comparison with decellularization alone, as shown by burst pressure and uniaxial tensile tests. In conclusion, valves decellularized with Tryp + Tx and PNGaseF resulted in prostheses with potentially reduced immunogenicity and maintained mechanical stability.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Transplante Heterólogo , Animais , Carboidratos , Glicosilação , Valvas Cardíacas , Humanos , Suínos , Engenharia Tecidual
4.
Xenotransplantation ; 27(2): e12571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769101

RESUMO

BACKGROUND: Limited availability of decellularized allogeneic heart valve substitutes restricts the clinical application thereof. Decellularized xenogeneic valves might constitute an attractive alternative; however, increased immunological hurdles have to be overcome. This study aims for the in vivo effect in sheep of decellularized porcine pulmonary heart valves (dpPHV) enzymatically treated for N-glycan and DNA removal. METHODS: dpPHV generated by nine different decelluarization methods were characterized in respect of DNA, hydroxyproline, GAGs, and SDS content. Orthotopic implantation in sheep for six months of five groups of dpPHV (n = 3 each; 3 different decellularization protocols w/o PNGase F and DNase I treatment) allowed the analysis of function and immunological reaction in the ovine host. Allogenic doPHV implantations (n = 3) from a previous study served as control. RESULTS: Among the decellularization procedures, Triton X-100 & SDS as well as trypsin & Triton X-100 resulted in highly efficient removal of cellular components, while the extracellular matrix remained intact. In vivo, the functional performance of dpPHV was comparable to that of allogeneic controls. Removal of N-linked glycans and DNA by enzymatic PNGase F and DNase I treatment had positive effects on the clinical performance of Triton X-100 & SDS dpPHV, whereas this treatment of trypsin & Triton X-100 dpPHV induced the lowest degree of inflammation of all tested xenogeneic implants. CONCLUSION: Functional xenogeneic heart valve substitutes with a low immunologic load can be produced by decellularization combined with enzymatic removal of DNA and partial deglycosylation of dpPHV.


Assuntos
DNA/metabolismo , Próteses Valvulares Cardíacas/efeitos adversos , Valvas Cardíacas/metabolismo , Polissacarídeos/metabolismo , Engenharia Tecidual , Animais , Bioprótese/efeitos adversos , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Matriz Extracelular/efeitos dos fármacos , Valvas Cardíacas/efeitos dos fármacos , Ovinos , Suínos , Engenharia Tecidual/métodos , Transplante Heterólogo/métodos
5.
Basic Res Cardiol ; 111(4): 39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154491

RESUMO

Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera.


Assuntos
Anticorpos Heterófilos/imunologia , Galactosiltransferases/deficiência , Próteses Valvulares Cardíacas , Valvas Cardíacas/imunologia , Xenoenxertos/imunologia , Animais , Antígenos Heterófilos/imunologia , Bioprótese , Western Blotting , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Suínos
6.
Xenotransplantation ; 22(5): 345-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26301779

RESUMO

BACKGROUND: Current clinical applications of cell therapies and tissue engineered (TE) constructs aim to generate non-immunogenic cells in the best-case scenario of autologous origin. As the cells are cultured, it is theoretically possible that immunoreactive molecules present in xenogenic cell culture media components, such as fetal calf serum (FCS), are transmitted in the culturing process. This problem has propelled the search for xeno-free culture media; however, in vitro culturing of many cell types, especially TE constructs which consist of several cell types, still relies to a great extent on FCS. In this study, we investigated the degree to which xenoantigens are transmitted to human endothelial cells (EC) cultured in medium containing FCS. METHODS: Human EC were isolated from pulmonary artery fragments and atrial appendage tissue samples by enzymatic digestion followed by magnetic-activated cell separation (MACS) utilizing CD31 antibodies. The cells were cultured in EGM-2 medium containing 10% FCS for several passages. Griffonia Simplicifolia Lectin I - Isolectin B4 (GSL I-B4) was used to detect cell surface-bound αGal epitopes either microscopically or flow cytometrically. Antibody binding to cells exposed to human sera prepared from healthy blood donors was investigated to detect surface-located xenoantigens. An antibody-dependent cytotoxicity assay was conducted with heat-inactivated human serum supplemented with rabbit complement and analyzed by flow cytometry after staining for living and dead cells (LIVE/DEAD assay kit). In all experiments, cells cultured in EGM-2 supplemented with 10% human serum (HS) served as controls. RESULTS: Human EC were isolated and cultured successfully for ≥6 passages. GSL I-B4 staining showed no difference between human EC cultured in FCS and in HS. In contrast to porcine EC which showed strong staining with GSL I-B4 and binding of preformed human serum antibodies, human EC cultured in FCS media did not bind human antibodies from high titer anti-αGal and anti-Neu5GC antibody serum. Along these lines, the antibody-dependent cytotoxicity assay showed that human EC cultures independent of FCS or HS usage were not affected, whereas about 40% of porcine EC did not survive. CONCLUSION: Despite culturing cells in an environment containing xenoantigens, we were unable to demonstrate the translocation of xenogenic epitopes onto the surface of human EC or find an increased sensitivity in preformed human xenoantibody-dependent complement activity. Therefore, our results suggest that the use of human cells for TE or cell therapy grown in cell culture systems complemented with FCS does not necessarily lead to an acute rejection reaction upon implantation.


Assuntos
Anticorpos Heterófilos/imunologia , Antígenos Heterófilos/imunologia , Dissacarídeos/imunologia , Células Endoteliais/imunologia , Epitopos/imunologia , Transplante Heterólogo , Animais , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultura de Células , Células Cultivadas , Citometria de Fluxo , Humanos , Coelhos , Suínos , Engenharia Tecidual/métodos
7.
Basic Res Cardiol ; 109(6): 441, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25231595

RESUMO

Generating cellularized 3D constructs with clinical relevant dimensions is challenged by nutrition supply. This is of utmost importance for cardiac tissue engineering, since cardiomyocytes are extremely sensitive to malnutrition and hypoxia in vitro and after implantation. To develop a perfusable myocardial patch, we have focused on seeding a decellularized biological vascularized matrix (BioVaM) with endothelial cells. BioVaM is produced by decellularization of porcine small intestinal segments with preserved arterial and venous pedicles, which can be connected to a perfusion system in vitro or the host vasculature in vivo. The BioVaM vessel bed was re-seeded with porcine primary endothelial cells (pCEC). Seeding efficiency was influenced by detergent composition used for decellularization (sodium dodecyl sulfate (SDS) and/or Triton X-100) and the medium composition used for re-seeding. After decellularization, residual SDS was detected in the matrix affecting the survival of pCEC which showed a low tolerance to SDS and Triton X-100. Sensitivity to detergents was attenuated by supplementation of the medium with bovine serum albumin (BSA) or fetal calf serum (FCS). Pre-conditioning of the BioVaM with 20% FCS was not sufficient to attain pCEC survival in the vascular bed. However, re-cellularization was achieved by prolonged FCS supplementation during cultivation, resulting in a perfusable, re-endothelialized matrix of 11 cm2 in size. This achievement represents a promising step towards engineering of perfusable, 3D cardiac constructs with clinically relevant dimensions.


Assuntos
Células Endoteliais , Matriz Extracelular , Coração , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Humanos
8.
Front Cardiovasc Med ; 9: 895943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017105

RESUMO

Objectives: Decellularized homograft valves (DHV) appear to elicit an immune response despite efficient donor cell removal. Materials and methods: A semiquantitative Dot-Blot analysis for preformed and new recipient antibodies was carried out in 20 patients following DHV implantation on days 0, 1, 7, and 28 using secondary antihuman antibodies. Immune reactions were tested against the implanted DHV as well as against the stored samples of 5 non-implanted decellularized aortic (DAH) and 6 pulmonary homografts (DPH). Results: In this study, 20 patients (3 female and 17 male patients) were prospectively included, with a median age of 18 years and an IQR of 12-30 years. Six patients received DPH and 14 received DAH. The amount of antibody binding, averaged for all patients, decreased on post-operative days 1 and 7 compared to pre-operative values; and on day 28, antibody binding reached close to pre-operative levels (16.8 ± 2.5 on day 0, 3.7 ± 1.9 on day 1, 2.3 ± 2.7 on day 7, and 13.2 ± 3.7 on day 28). In comparison with the results in healthy controls, there was a higher amount of antibody binding to DAH than to DPH. The mean number of arbitrary units was 18.4 ± 3.1 in aortic and 12.9 ± 4.5 in pulmonary DHV (p = 0.140). Male patients exhibited higher antibody binding to aortic DHV than female patients (19.5 ± 2.1 vs. 1.6 ± 6.7). The p-value calculation was limited, as only two female patients received DAH. There was no correlation between the amount of overall antibody binding to DHV with respect to donor age (Kruskal-Wallis test p = 0.550). DHV recipients with a sex mismatch to the donor showed significantly less antibody binding (6.5 ± 1.8 vs. 13.7 ± 1.8; p = 0.003). Our main finding was an increase in antibody binding in younger patients receiving decellularized aortic allografts. This increase was higher in patients with early degeneration signs but was not specific to the individual DHV implanted nor previous DHV implantation. Antibody binding toward explanted DHV was significantly increased in implicating antibody-mediated DHV degeneration. Conclusion: Serial assessment of tissue-specific antibody binding revealed an increase in some patients within 4 weeks after surgery, who subsequently developed early signs of allograft degeneration. Further studies with larger sample sizes are needed to confirm the prognostic relevance of increased antibody activity in addition to targeted research efforts to identify the molecular agents triggering this type of antibody response.

9.
Regen Biomater ; 8(5): rbab036, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35928180

RESUMO

Decellularization of xenogeneic heart valves might lead to excellent regenerative implants, from which many patients could benefit. However, this material carries various xenogeneic epitopes and thus bears a considerable inherent immunological risk. Here, we investigated the regenerative and immunogenic potential of xenogeneic decellularized heart valve implants using pigs deficient for the galactosyltransferase gene (GGTA1-KO) as novel large animal model. Decellularized aortic and pulmonary heart valves obtained from sheep, wild-type pigs or GGTA1-KO pigs were implanted into GGTA1-KO pigs for 3, or 6 months, respectively. Explants were analyzed histologically, immunhistologically (CD3, CD21 and CD172a) and anti-αGal antibody serum titers were determined by ELISA. Xenogeneic sheep derived implants exhibited a strong immune reaction upon implantation into GGTA1-KO pigs, characterized by massive inflammatory cells infiltrates, presence of foreign body giant cells, a dramatic increase of anti-αGal antibody titers and ultimately destruction of the graft, whereas wild-type porcine grafts induced only a mild reaction in GGTA1-KO pigs. Allogeneic implants, wild-type/wild-type and GGTA1-KO/GGTA1-KO valves did not induce a measurable immune reaction. Thus, GGTA1-KO pigs developed a 'human-like' immune response toward decellularized xenogeneic implants showing that immunogenicity of xenogeneic implants is not sufficiently reduced by decellularization, which detracts from their regenerative potential.

10.
Eur J Cardiothorac Surg ; 59(4): 773-782, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33544830

RESUMO

OBJECTIVES: Decellularized homograft valves (DHVs) have shown promising clinical results, particularly in the treatment of congenital heart disease. However, DHV appears to elicit an immune response in a subset of young patients, indicated by early valve degeneration. As the decellularization process is quality controlled for each DHV, we hypothesized that there may be residual immunogenicity within the extracellular matrix of DHV. METHODS: A semi-quantitative dot blot analysis was established to screen for preformed recipient antibodies using secondary anti-human antibodies. Fifteen DHV samples (7 aortic, 8 pulmonary) were solubilized and exposed to serum from 20 healthy controls. RESULTS: The sera from young controls (n = 10, 18-25 years) showed significantly stronger binding of preformed antibodies than sera from older individuals (n = 10, 48-73 years). The difference between the means of arbitrary units was 15.1 ± 6.5 (P = 0.0315). There was high intraindividual variance in the mean amounts of arbitrary units of antibody binding with some healthy controls showing >10 times higher antibody binding towards 2 different DHV. The amount of preformed antibodies bound to DHVs was higher in aortic than in pulmonary DHVs. The mean number of antibody binding (in arbitrary units) was 17.2 ± 4.5 in aortic and 14.5 ± 4.7 in pulmonary DHV (P = 0.27). The amount of preformed antibodies bound to pulmonary DHVs was statistically significantly higher in the sera of healthy males (n = 10) than in the sera of healthy females (n = 10). The mean number of arbitrary units was 17.2 ± 4.2 in male and 11.7 ± 5.3 in female sera (P = 0.036). Antibody binding to aortic DHV was also higher in males, but not significant (18.8 ± 5.0 vs 15.6 ± 4.0). Blood group (ABO) incompatibility between the serum from controls and DHV showed no impact on antibody binding, and there was no age-related impact among DHV donors. CONCLUSIONS: Residual immunogenicity of decellularized homografts appears to exist despite almost complete cell removal. The established dot blot method allows a semi-quantitative assessment of the individual immune response towards extracellular DHV components and potentially the possibility of preoperative homograft matching.


Assuntos
Cardiopatias Congênitas , Valva Pulmonar , Aloenxertos , Valva Aórtica/cirurgia , Feminino , Humanos , Imunidade , Masculino , Transplante Homólogo
11.
Acta Biomater ; 68: 41-52, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191508

RESUMO

The decellularization of biological tissues decreases immunogenicity, allows repopulation with cells, and may lead to improved long-term performance after implantation. Freeze drying these tissues would ensure off-the-shelf availability, save storage costs, and facilitates easy transport. This study evaluates the in vivo performance of freeze-dried decellularized heart valves in juvenile sheep. TritonX-100 and sodium dodecylsulfate decellularized ovine and porcine pulmonary valves (PV) were freeze-dried in a lyoprotectant sucrose solution. After rehydration for 24 h, valves were implanted into the PV position in sheep as allografts (fdOPV) and xenografts (fdPPV), while fresh dezellularized ovine grafts (frOPV) were implanted as controls. Functional assessment was performed by transesophageal echocardiography at implantation and at explantation six months later. Explanted grafts were analysed histologically to assess the matrix, and immunofluorescence stains were used to identify the repopulating cells. Although the graft diameters and orifice areas increased, good function was maintained, except for one insufficient, strongly deteriorated frOPV. Cells which were positive for either endothelial or interstitial markers were found in all grafts. In fdPPV, immune-reactive cells were also found. Our findings suggest that freeze-drying does not alter the early hemodynamic performance and repopulation potential of decellularized grafts in vivo, even in the challenging xenogeneic situation. Despite evidence of an immunological reaction for the xenogenic valves, good early functionalities were achieved. STATEMENT OF SIGNIFICANCE: Decellularized allogeneic heart valves show excellent results as evident from large animal experiments and clinical trials. However, a long-term storing method is needed for an optimal use of this limited resource in the clinical setting, where an optimized matching of graft and recipient is requested. As demonstrated in this study, freeze-dried and freshly decellularized grafts reveal equally good results after implantation in the juvenile sheep concerning function and repopulation with recipients' cells. Thus, freeze-drying arises as a promising method to extend the shelf-life of valvular grafts compared to those stored in antibiotic-solution as currently practised.


Assuntos
Liofilização , Próteses Valvulares Cardíacas , Valva Pulmonar/fisiologia , Valva Pulmonar/transplante , Animais , Varredura Diferencial de Calorimetria , Matriz Extracelular/metabolismo , Feminino , Imunofluorescência , Desnaturação Proteica , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Ovinos , Temperatura , Transplante Heterólogo , Transplante Homólogo
12.
Acta Biomater ; 43: 71-77, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422199

RESUMO

UNLABELLED: Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. STATEMENT OF SIGNIFICANCE: Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis.


Assuntos
Criopreservação/métodos , Valva Pulmonar/anatomia & histologia , Valva Pulmonar/fisiologia , Animais , Fenômenos Biomecânicos , Morte Celular , Teste de Materiais , Valva Pulmonar/citologia , Sus scrofa , Resistência à Tração
13.
Sci Rep ; 5: 11428, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26086331

RESUMO

Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.


Assuntos
Anfíbios/embriologia , Mesoderma/embriologia , Anfíbios/metabolismo , Animais , Biomarcadores , Epiderme/embriologia , Epiderme/metabolismo , Larva , Mesoderma/metabolismo , Músculos/embriologia , Crista Neural/embriologia , Crista Neural/metabolismo , Cauda/embriologia
14.
Tissue Eng Part C Methods ; 21(9): 922-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25809201

RESUMO

Decellularized heart valves can be used as starter matrix implants for heart valve replacement therapies in terms of guided tissue regeneration. Decellularized matrices ideally need to be long-term storable to assure off-the-shelf availability. Freeze-drying is an attractive preservation method, allowing storage at room temperature in a dried state. However, the two inherent processing steps, freezing and drying, can cause severe damage to extracellular matrix (ECM) proteins and the overall tissue histoarchitecture and thus impair biomechanical characteristics of resulting matrices. Freeze-drying therefore requires a lyoprotective agent that stabilizes endogenous structural proteins during both substeps and that forms a protective glassy state at room temperature. To estimate incubation times needed to infiltrate decellularized heart valves with the lyoprotectant sucrose, temperature-dependent diffusion studies were done using Fourier transform infrared spectroscopy. Glycerol, a cryoprotective agent, was studied for comparison. Diffusion of both protectants was found to exhibit Arrhenius behavior. The activation energies of sucrose and glycerol diffusion were found to be 15.9 and 37.7 kJ·mol(-1), respectively. It was estimated that 4 h of incubation at 37°C is sufficient to infiltrate heart valves with sucrose before freeze-drying. Application of a 5% sucrose solution was shown to stabilize acellular valve scaffolds during freeze-drying. Such freeze-dried tissues, however, displayed pores, which were attributed to ice crystal damage, whereas vacuum-dried scaffolds in comparison revealed no pores after drying and rehydration. Exposure to a hygroscopic sucrose solution (80%) before freeze-drying was shown to be an effective method to diminish pore formation in freeze-dried ECMs: matrix structures closely resembled those of control samples that were not freeze-dried. Heart valve matrices were shown to be in a glassy state after drying, suggesting that they can be stored at room temperature.


Assuntos
Liofilização , Valvas Cardíacas/citologia , Sacarose/farmacologia , Animais , Varredura Diferencial de Calorimetria , Crioprotetores/farmacologia , Difusão , Vidro , Valvas Cardíacas/efeitos dos fármacos , Valva Pulmonar/citologia , Valva Pulmonar/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Sus scrofa , Temperatura , Alicerces Teciduais/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA