Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 597(7874): 77-81, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471275

RESUMO

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Assuntos
Ciclo do Carbono , Florestas , Insetos/metabolismo , Árvores/metabolismo , Animais , Sequestro de Carbono , Clima , Ecossistema , Mapeamento Geográfico , Cooperação Internacional
2.
Glob Chang Biol ; 28(10): 3260-3274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170829

RESUMO

Observational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process-based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply.


Assuntos
Ecossistema , Florestas , Mudança Climática , Previsões , Árvores
3.
Glob Chang Biol ; 27(18): 4339-4351, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213047

RESUMO

Changing climate and disturbance regimes are increasingly challenging the resilience of forest ecosystems around the globe. A powerful indicator for the loss of resilience is regeneration failure, that is, the inability of the prevailing tree species to regenerate after disturbance. Regeneration failure can result from the interplay among disturbance changes (e.g., larger and more frequent fires), altered climate conditions (e.g., increased drought), and functional traits (e.g., method of seed dispersal). This complexity makes projections of regeneration failure challenging. Here we applied a novel simulation approach assimilating data-driven fire projections with vegetation responses from process modeling by means of deep neural networks. We (i) quantified the future probability of regeneration failure; (ii) identified spatial hotspots of regeneration failure; and (iii) assessed how current forest types differ in their ability to regenerate under future climate and fire. We focused on the Greater Yellowstone Ecosystem (2.9 × 106  ha of forest) in the Rocky Mountains of the USA, which has experienced large wildfires in the past and is expected to undergo drastic changes in climate and fire in the future. We simulated four climate scenarios until 2100 at a fine spatial grain (100 m). Both wildfire activity and unstocked forest area increased substantially throughout the 21st century in all simulated scenarios. By 2100, between 28% and 59% of the forested area failed to regenerate, indicating considerable loss of resilience. Areas disproportionally at risk occurred where fires are not constrained by topography and in valleys aligned with predominant winds. High-elevation forest types not adapted to fire (i.e., Picea engelmannii-Abies lasiocarpa as well as non-serotinous Pinus contorta var. latifolia forests) were especially vulnerable to regeneration failure. We conclude that changing climate and fire could exceed the resilience of forests in a substantial portion of Greater Yellowstone, with profound implications for carbon, biodiversity, and recreation.


Assuntos
Pinus , Incêndios Florestais , Clima , Mudança Climática , Ecossistema , Florestas
4.
Glob Chang Biol ; 26(7): 4013-4027, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32301569

RESUMO

Mountain forests are at particular risk of climate change impacts due to their temperature limitation and high exposure to warming. At the same time, their complex topography may help to buffer the effects of climate change and create climate refugia. Whether climate change can lead to critical transitions of mountain forest ecosystems and whether such transitions are reversible remain incompletely understood. We investigated the resilience of forest composition and size structure to climate change, focusing on a mountain forest landscape in the Eastern Alps. Using the individual-based forest landscape model iLand, we simulated ecosystem responses to a wide range of climatic changes (up to a 6°C increase in mean annual temperature and a 30% reduction in mean annual precipitation), testing for tipping points in vegetation size structure and composition under different topography scenarios. We found that at warming levels above +2°C a threshold was crossed, with the system tipping into an alternative state. The system shifted from a conifer-dominated landscape characterized by large trees to a landscape dominated by smaller, predominantly broadleaved trees. Topographic complexity moderated climate change impacts, smoothing and delaying the transitions between alternative vegetation states. We subsequently reversed the simulated climate forcing to assess the ability of the landscape to recover from climate change impacts. The forest landscape showed hysteresis, particularly in scenarios with lower precipitation. At the same mean annual temperature, equilibrium vegetation size structure and species composition differed between warming and cooling trajectories. Here we show that even moderate warming corresponding to current policy targets could result in critical transitions of forest ecosystems and highlight the importance of topographic complexity as a buffering agent. Furthermore, our results show that overshooting ambitious climate mitigation targets could be dangerous, as ecological impacts can be irreversible at millennial time scales once a tipping point has been crossed.


Assuntos
Mudança Climática , Traqueófitas , Ecossistema , Florestas , Árvores
5.
Glob Ecol Biogeogr ; 29(12): 2082-2096, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380902

RESUMO

AIM: Simulation models are important tools for quantifying the resilience (i.e., persistence under changed environmental conditions) of forest ecosystems to global change. We synthesized the modelling literature on forest resilience, summarizing common models and applications in resilience research, and scrutinizing the implementation of important resilience mechanisms in these models. Models applied to assess resilience are highly diverse, and our goal was to assess how well they account for important resilience mechanisms identified in experimental and empirical research. LOCATION: Global. TIME PERIOD: 1994 to 2019. MAJOR TAXA STUDIED: Trees. METHODS: We reviewed the forest resilience literature using online databases, selecting 119 simulation modelling studies for further analysis. We identified a set of resilience mechanisms from the general resilience literature and analysed models for their representation of these mechanisms. Analyses were grouped by investigated drivers (resilience to what) and responses (resilience of what), as well as by the type of model being used. RESULTS: Models used to study forest resilience varied widely, from analytical approaches to complex landscape simulators. The most commonly addressed questions were associated with resilience of forest cover to fire. Important resilience mechanisms pertaining to regeneration, soil processes, and disturbance legacies were explicitly simulated in only 34 to 46% of the model applications. MAIN CONCLUSIONS: We found a large gap between processes identified as underpinning forest resilience in the theoretical and empirical literature, and those represented in models used to assess forest resilience. Contemporary forest models developed for other goals may be poorly suited for studying forest resilience during an era of accelerating change. Our results highlight the need for a new wave of model development to enhance understanding of and management for resilient forests.

6.
Ecol Appl ; 30(2): e02030, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674698

RESUMO

In subalpine forests of the western United States that historically experienced infrequent, high-severity fire, whether fire management can shape 21st-century fire regimes and forest dynamics to meet natural resource objectives is not known. Managed wildfire use (i.e., allowing lightning-ignited fires to burn when risk is low instead of suppressing them) is one approach for maintaining natural fire regimes and fostering mosaics of forest structure, stand age, and tree-species composition, while protecting people and property. However, little guidance exists for where and when this strategy may be effective with climate change. We simulated most of the contiguous forest in Grand Teton National Park, Wyoming, USA to ask: (1) how would subalpine fires and forest structure be different if fires had not been suppressed during the last three decades? And (2) what is the relative influence of climate change vs. fire management strategy on future fire and forests? We contrasted fire and forests from 1989 to 2098 under two fire management scenarios (managed wildfire use and fire suppression), two general circulation models (CNRM-CM5 and GFDL-ESM2M), and two representative concentration pathways (8.5 and 4.5). We found little difference between management scenarios in the number, size, or severity of fires during the last three decades. With 21st-century warming, fire activity increased rapidly, particularly after 2050, and followed nearly identical trajectories in both management scenarios. Area burned per year between 2018 and 2099 was 1,700% greater than in the last three decades (1989-2017). Large areas of forest were abruptly lost; only 65% of the original 40,178 ha of forest remained by 2098. However, forests stayed connected and fuels were abundant enough to support profound increases in burning through this century. Our results indicate that strategies emphasizing managed wildfire use, rather than suppression, will not alter climate-induced changes to fire and forests in subalpine landscapes of western North America. This suggests that managers may continue to have flexibility to strategically suppress subalpine fires without concern for long-term consequences, in distinct contrast with dry conifer forests of the Rocky Mountains and mixed conifer forest of California where maintaining low fuel loads is essential for sustaining frequent, low-severity surface fire regimes.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , América do Norte , Parques Recreativos , Wyoming
7.
For Ecol Manage ; 475: 118408, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35686290

RESUMO

Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.

8.
J Environ Manage ; 254: 109792, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731030

RESUMO

Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16 050 ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.


Assuntos
Besouros , Árvores , Animais , Europa (Continente) , Florestas , Noruega , Casca de Planta
9.
For Ecol Manage ; 445: 37-47, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35645457

RESUMO

Forest ecosystems provide a wide variety of ecosystem services to society. In harsh mountain environments, the regulating services of forests are of particular importance. Managing mountain forests for regulating services is a cost- and labor intensive endeavor. Yet, also unmanaged forests regulate the environment. In the context of evidence-based decision making it is thus important to scrutinize if current management recommendations improve the supply of regulating ecosystem services over unmanaged development trajectories. A further issue complicating decision making in the context of regulating ecosystem services is their high sensitivity to climate change. Climate-mediated increases in natural disturbances, for instance, could strongly reduce the supply of regulating services from forests in the future. Given the profound environmental changes expected for the coming decades it remains unclear whether forest management will still be able to significantly control the future trajectories of mountain forest development, or whether the management effect will be superseded by a much stronger climate and disturbance effect. Here, our objectives were (i) to quantify the future regulating service supply from a 6456 ha landscape in the Stubai valley in Tyrol, Austria, and (ii) to assess the relative importance of management, climate, and natural disturbances on the future supply of regulating ecosystem services. We focused our analysis on climate regulation, water regulation, and erosion regulation, and used the landscape simulation model iLand to quantify their development under different climate scenarios and management strategies. Our results show that unmanaged forests are efficient in providing regulating ecosystem services. Both climate regulation and erosion regulation were higher in unmanaged systems compared to managed systems, while water regulation was slightly enhanced by management. Overall, direct effects of climate change had a stronger influence on the future supply of regulating services than management and natural disturbances. The ability of management to control ecosystem service supply decreased sharply with the severity of future climate change. This finding highlights that forest management could be severely stymied in the future if climate change continues to proceed at its current rate. An improved quantitative understanding of the drivers of future ecosystem service supply is needed to more effectively combine targeted management efforts and natural ecosystem dynamics towards sustaining the benefits society derives from forests in a rapidly changing world.

10.
Ecology ; 99(4): 966-977, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29464688

RESUMO

Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying conditions cause postfire tree-regeneration failure? (2) If postfire tree regeneration was successful, how does early tree density differ under future climate relative to historical climate? We conducted a stand-level (1 ha) factorial simulation experiment using the individual-based forest process model iLand to identify combinations of fire return interval (11-100 yr), distance to seed source (50-1,000 m), and climate (historical, mid-21st century, late-21st century) where trees failed to regenerate by 30-yr postfire. If regeneration was successful, we compared stand densities between climate periods. Simulated postfire regeneration were surprisingly resilient to changing climate and fire drivers. Douglas-fir regeneration failed more frequently (55%) than lodgepole pine (28% and 16% for non-serotinous and serotinous stands, respectively). Distance to seed source was an important driver of regeneration failure for Douglas-fir and non-serotinous lodgepole pine; regeneration never failed when stands were 50 m from a seed source and nearly always failed when stands were 1 km away. Regeneration of serotinous lodgepole pine only failed when fire return intervals were ≤20 yr and stands were far (1 km) from a seed source. Warming climate increased regeneration success for Douglas-fir but did not affect lodgepole pine. If regeneration was successful, postfire density varied with climate. Douglas-fir and serotinous lodgepole pine regeneration density both increased under 21st-century climate but in response to different climate variables (growing season length vs. cold limitation). Results suggest that, given a warmer future with larger and more frequent fires, a greater number of stands that fail to regenerate after fires combined with increasing density in stands where regeneration is successful could produce a more coarse-grained forest landscape.


Assuntos
Besouros , Incêndios , Animais , Clima , Florestas , Wyoming
11.
Ecol Appl ; 28(7): 1884-1896, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055058

RESUMO

The ability of forests to continuously provide ecosystem services (ES) is threatened by rapid changes in climate and disturbance regimes. Consequently, these changes present a considerable challenge for forest managers. Management of forests often focuses on maximizing the level of ES provisioning over extended time frames (i.e., rotation periods of more than 100 yr). However, temporal stability is also crucial for many ES, for example, in the context of a steady provisioning of resources to the industry, or the protection of human infrastructure against natural hazards. How temporal stability and the level of ES provisioning are related is of increasing interest, particularly since changing climate and disturbance regimes amplify temporal variability in forest ecosystems. In this simulation study, we investigated whether forest management can simultaneously achieve high levels and temporal stability of ES provisioning. Specifically, we quantified (1) trade-offs between ES stability and level of ES provisioning, and (2) the effect of tree species diversity on ES stability. Simulating a wide range of future climate scenarios and management strategies, we found a negative relationship between temporal stability and level of ES provisioning for timber production, carbon cycling, and site protection in a landscape in the Austrian Alps. Tree species diversity had a predominantly positive effect on ES stability. We conclude that attempts to maximize the level of ES provisioning may increase its temporal variability, and thus threaten the continuity of ES supply. Consequently, considerations of stability need to be more explicitly included in forest management planning under increasingly variable future conditions.


Assuntos
Biodiversidade , Mudança Climática , Agricultura Florestal , Florestas , Árvores/fisiologia , Áustria , Conservação dos Recursos Naturais , Modelos Biológicos , Análise Espaço-Temporal
12.
Agric For Meteorol ; 263: 308-322, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35633776

RESUMO

Disturbances alter composition, structure, and functioning of forest ecosystems, and their legacies persist for decades to centuries. We investigated how temperate forest landscapes may recover their carbon (C) after severe wind and bark beetle disturbance, while being exposed to climate change. We used the forest landscape and disturbance model iLand to quantify (i) the recovery times of the total ecosystem C, (ii) the effect of climate change on C recovery, and (iii) the differential factors contributing to C recovery. We reconstructed a recent disturbance episode (2008-2016) based on Landsat satellite imagery, which affected 39% of the forest area in the 16,000 ha study landscape. We subsequently simulated forest recovery under a continuation of business-asusual management until 2100. Our results indicated that the recovery of the pre-disturbance C stocks (C payback time) was reached 17 years after the end of the disturbance episode. The C stocks of a theoretical undisturbed development trajectory were reached 30 years after the disturbance episode (C sequestration parity). Drier and warmer climates delayed simulated C recovery. Without the fertilizing effect of CO2, C payback times were delayed by 5-9 years, while C parity was not reached within the 21st century. Recovery was accelerated by an enhanced C uptake compared to undisturbed conditions (disturbance legacy sink effect) that persisted for 35 years after the disturbance episode. Future climate could have negative impacts on forest recovery and thus further amplify climate change through C loss from ecosystems, but the effect is strongly contingent on the magnitude and persistence of alleviating CO2 effects. Our modelling study highlights the need to consider both negative and positive effects of disturbance (i.e., C loss immediately after an event vs. enhanced C uptake of the recovering forest) in order to obtain a comprehensive understanding of disturbance effects on the forest C cycle.

13.
For Ecol Manage ; 430: 460-471, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35645456

RESUMO

High-severity, infrequent fires in forests shape landscape mosaics of stand age and structure for decades to centuries, and forest structure can vary substantially even among same-aged stands. This variability among stand structures can affect landscape-scale carbon and nitrogen cycling, wildlife habitat availability, and vulnerability to subsequent disturbances. We used an individual-based forest process model (iLand) to ask: Over 300 years of postfire stand development, how does variation in early regeneration densities versus abiotic conditions influence among-stand structural variability for four conifer species widespread in western North America? We parameterized iLand for lodgepole pine (Pinus contorta var. latifolia), Douglas-fir (Pseudotsuga menziesii var. glauca), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies lasiocarpa) in Greater Yellowstone (USA). Simulations were initialized with field data on regeneration following stand-replacing fires, and stand development was simulated under historical climatic conditions without further disturbance. Stand structure was characterized by stand density and basal area. Stands became more similar in structure as time since fire increased. Basal area converged more rapidly among stands than tree density for Douglas-fir and lodgepole pine, but not for subalpine fir and Engelmann spruce. For all species, regeneration-driven variation in stand density persisted for at least 99 years postfire, and for lodgepole pine, early regeneration densities dictated among-stand variation for 217 years. Over time, stands shifted from competition-driven convergence to environment-driven divergence, in which variability among stands was maintained or increased. The relative importance of drivers of stand structural variability differed between density and basal area and among species due to differential species traits, growth rates, and sensitivity to intraspecific competition versus abiotic conditions. Understanding dynamics of postfire stand development is increasingly important for anticipating future landscape patterns as fire activity increases.

14.
J Environ Manage ; 209: 46-56, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29275284

RESUMO

In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in ecosystem management.


Assuntos
Mudança Climática , Ecossistema , Florestas , Áustria , Árvores
15.
Ecol Monogr ; 87(4): 665-684, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29628526

RESUMO

Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.

16.
Glob Chang Biol ; 23(1): 269-282, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633953

RESUMO

The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning.


Assuntos
Mudança Climática , Ecossistema , Florestas , Áustria , Biodiversidade , Clima , Árvores
17.
For Ecol Manage ; 388: 3-12, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28860674

RESUMO

As a result of a rapidly changing climate the resilience of forests is an increasingly important property for ecosystem management. Recent efforts have improved the theoretical understanding of resilience, yet its operational quantification remains challenging. Furthermore, there is growing awareness that resilience is not only a means to addressing the consequences of climate change but is also affected by it, necessitating a better understanding of the climate sensitivity of resilience. Quantifying current and future resilience is thus an important step towards mainstreaming resilience thinking into ecosystem management. Here, we present a novel approach for quantifying forest resilience from thinning trials, and assess the climate sensitivity of resilience using process-based ecosystem modeling. We reinterpret the wide range of removal intensities and frequencies in thinning trials as an experimental gradient of perturbation, and estimate resilience as the recovery rate after perturbation. Our specific objectives were (i) to determine how resilience varies with stand and site conditions, (ii) to assess the climate sensitivity of resilience across a range of potential future climate scenarios, and (iii) to evaluate the robustness of resilience estimates to different focal indicators and assessment methodologies. We analyzed three long-term thinning trials in Norway spruce (Picea abies (L.) Karst.) forests across an elevation gradient in Austria, evaluating and applying the individual-based process model iLand. The resilience of Norway spruce was highest at the montane site, and decreased at lower elevations. Resilience also decreased with increasing stand age and basal area. The effects of climate change were strongly context-dependent: At the montane site, where precipitation levels were ample even under climate change, warming increased resilience in all scenarios. At lower elevations, however, rising temperatures decreased resilience, particularly at precipitation levels below 750-800 mm. Our results were largely robust to different focal variables and resilience definitions. Based on our findings management can improve the capacity to recover from partial disturbances by avoiding overmature and overstocked conditions. At increasingly water limited sites a strongly decreasing resilience of Norway spruce will require a shift towards tree species better adapted to the expected future conditions.

18.
Oecologia ; 177(3): 619-630, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25526843

RESUMO

Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.


Assuntos
Biodiversidade , Ciclo do Carbono , Carbono/química , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Mudança Climática , Meio Ambiente , Europa (Continente)
19.
Ecol Appl ; 24(8): 2063-2077, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053913

RESUMO

Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management.


Assuntos
Conservação dos Recursos Naturais/métodos , Florestas , Simulação por Computador , Monitoramento Ambiental , Modelos Biológicos , Oregon , Fatores de Tempo
20.
Nat Ecol Evol ; 8(6): 1109-1117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684739

RESUMO

Large pulses of tree mortality have ushered in a major reorganization of Europe's forest ecosystems. To initiate a robust next generation of trees, the species that are planted today need to be climatically suitable throughout the entire twenty-first century. Here we developed species distribution models for 69 European tree species based on occurrence data from 238,080 plot locations to investigate the option space for current forest management in Europe. We show that the average pool of tree species continuously suitable throughout the century is smaller than that under current and end-of-century climate conditions, creating a tree species bottleneck for current management. If the need for continuous climate suitability throughout the lifespan of a tree planted today is considered, climate change shrinks the tree species pool available to management by between 33% and 49% of its current values (40% and 54% of potential end-of-century values), under moderate (Representative Concentration Pathway 2.6) and severe (Representative Concentration Pathway 8.5) climate change, respectively. This bottleneck could have strong negative impacts on timber production, carbon storage and biodiversity conservation, as only 3.18, 3.53 and 2.56 species of high potential for providing these functions remain suitable throughout the century on average per square kilometre in Europe. Our results indicate that the option space for silviculture is narrowing substantially because of climate change and that an important adaptation strategy in forestry-creating mixed forests-might be curtailed by widespread losses of climatically suitable tree species.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Florestas , Árvores , Europa (Continente) , Árvores/crescimento & desenvolvimento , Biodiversidade , Agricultura Florestal , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA