Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 14(8): 2670-2680, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28692796

RESUMO

The aim of this article was to check the physical stability of the amorphous form of probucol at both standard storage and manufacturing conditions. Our studies clearly show that disordered form of the examined, cholesterol lowering, agent stored at ambient pressure does not reveal any tendency toward recrystallization. The physical stability of neat probucol stored at ambient pressure has been investigated (i) at room temperature by means of X-ray diffraction technique (XRD) as well as (ii) at T = 333 K by means of broadband dielectric spectroscopy (BDS). Due to the fact that compression is an important stage of drugs manufacturing we additionally performed physical stability tests of amorphous probucol at elevated pressure. The recrystallization tendency of the examined pharmaceutical has been tracked online from the initial and further up to a few hours after compression by means of the high pressure BDS technique. These experiments indicate that even very small pressure applied during the sample compression immediately induce its recrystallization. Since, the sensitivity on pressure eliminates probucol from the group of physically stable amorphous APIs, its stabilization is required. Taking into account that there are many scientific reports describing the positive effect of coadministration of probucol with the drug atorvastatin, we used the latter as probucol's crystallization inhibitor.


Assuntos
Atorvastatina/química , Pressão , Probucol/química , Espectroscopia Dielétrica , Simulação de Dinâmica Molecular , Temperatura , Difração de Raios X
2.
Mol Pharm ; 13(3): 1111-22, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26836258

RESUMO

In this article, we highlight the benefits coming from the application of amorphous protic ionic systems as active pharmaceutical ingredients (APIs). Using the case of the sumatriptan (STR) drug, we show that the conversion of nonionic API to partially ionized amorphous protic succinate salt (STR SUCC) brings a substantial improvement in apparent solubility. Since in general the disordered systems reveal a tendency to self-arrangement during storage, the dominant part of this article is dedicated to the physical stability issue of sumatriptan and its ionic counterpart. To recognize the crystallization tendency of the studied systems, the calorimetric measurements were performed. Additionally, the role of ion dynamics in spontaneous nucleation of amorphous sumatriptan succinate is discussed. The differential scanning calorimetry analysis of ionic and nonionic sumatriptan reveals many similarities in thermal properties of these APIs as well as distinct differences in their resistance against crystallization in the supercooled liquid state. To determine the long-term physical stability of STR SUCC at room temperature conditions, the time scale of structural relaxation below their glass transition temperatures is estimated. We show that in contrast to nonionic materials, τα predictions of STR SUCC are much more complex and require aging experiments.


Assuntos
Estabilidade de Medicamentos , Líquidos Iônicos , Ácido Succínico/química , Sumatriptana/química , Varredura Diferencial de Calorimetria , Cristalização , Solubilidade , Temperatura de Transição , Difração de Raios X
3.
Mol Pharm ; 12(10): 3628-38, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26323061

RESUMO

The aim of this article is to examine the crystallization tendencies of three chemically related amorphous anti-inflammatory agents, etoricoxib, celecoxib, and rofecoxib. Since the molecular mobility is considered as one of the factors affecting the crystallization behavior of a given material, broadband dielectric spectroscopy was used to gain insight into the molecular dynamics of the selected active pharmaceutical ingredients. Interestingly, our experiments did not reveal any significant differences in their relaxation behavior either in the supercooled liquid or in the glassy state. Hence, as a possible explanation for the enhanced physical stability of etoricoxib, its ability to undergo a tautomerization reaction was recognized. The occurrence of intramolecular proton transfer in the disordered etoricoxib was proven experimentally by time-dependent dielectric and infrared (IR) measurements. Additionally, IR spectroscopy combined with density functional theory calculations pointed out that in the etoricoxib drug, being in fact a binary mixture of tautomers, the individual isomers may interact with each other through a hydrogen bonding network. A possible explanation of this issue was achieved by performing dielectric experiments at elevated pressure. Since compression results in etoricoxib recrystallization, the possible influence of pressure on the observed stabilization effect is also carefully discussed.


Assuntos
Anti-Inflamatórios/química , Celecoxib/química , Estabilidade de Medicamentos , Lactonas/química , Piridinas/química , Sulfonas/química , Cristalização , Espectroscopia Dielétrica , Etoricoxib
4.
J Phys Chem Lett ; 12(1): 245-249, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33331778

RESUMO

In this Letter we report significant differences in the dielectric behavior of four nonpolymeric and sizable glass-forming molecules with related chemical structures. They belong to the recently constituted class of sizable glass-formers [Jedrzejowska et al. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2020, 101, 010603], for which the pattern of change in dielectric properties with structure has not yet been fully discovered. In the present study we tackle the fundamental problem of the structure-dynamics relationship. It was made possible by judicious choice of investigated systems with the values of dipole moments purposely kept at about the same level, and the only difference is the structure of the terminal substituents applied. The remarkable effect revealed by broadband dielectric spectroscopy is a large difference in the frequency dispersion of the α-relaxation for the systems studied. This interesting finding can be rationalized by the results of X-ray diffraction, clearly indicating the dissimilarities in the local intermolecular structure.

5.
Phys Rev E ; 104(3-1): 034702, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654189

RESUMO

Itraconazole (ITZ) is a thermotropic liquid crystal that exhibits isotropic, nematic, and smectic phases on cooling towards the glass transition upon melting. Over the years, new aspects regarding the liquid-crystalline ordering of this antifungal drug were systematically revealed. It has been shown recently that the temperature range of individual mesophases in ITZ can be modified by adding a small amount of glycerol (GLY). Moreover, above the critical concentration of 5% w/w, a smectic to nematic transition can be avoided. Here we go one step further, and we used broadband dielectric spectroscopy to investigate the new phase behavior of the ITZ-GLY mixture (5% w/w). To confirm the phase transformations of the ITZ-GLY mixture, differential scanning calorimetry was also employed. The analysis of molecular dynamics of the ITZ-GLY mixture in the glassy and isotropic phases revealed features similar to those observed for neat ITZ. Two relaxation processes were identified in the smectic-A phase, with similar temperature dependence, most likely related to the fast rotations around the long axis of a molecule. Additionally, the derivative analysis revealed another low-frequency process hidden under DC conductivity ascribed to the slow rotations about a short axis. We will show that the differences in the molecular organization in the smectic-A and isotropic phases leave a clear fingerprint on the temperature behavior of relaxation times and other dielectric parameters, such as DC conductivity and dielectric strength, for which a pretransition effect has been detected.

6.
Sci Rep ; 11(1): 15816, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349137

RESUMO

We examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not 'ordinary' liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter ßKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of ßKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π-π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed.

7.
Sci Rep ; 7(1): 7084, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765639

RESUMO

In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τα = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H+ hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent ßKWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26382408

RESUMO

The origin of Debye-like relaxation in some hydrogen-bonded liquids is a matter of hot debate over the past decade. While a relatively clear picture of the issue has been established for monohydroxy alcohols, the Debye-type dynamics in other glass-forming systems still remains a not fully understood phenomenon. In this paper we present the results of dielectric measurements performed in the frequency interval 10(-1) to 10(9)Hz, both in the supercooled and normal liquid state of etoricoxib anti-inflammatory agent. Our investigations reveal the presence of slow Debye-like relaxation with features similar to that found for another active pharmaceutical ingredient, ibuprofen. Our results provide a fresh insight into the molecular nature of Debye-type relaxation in H-bonded pharmaceutically relevant materials and thus may stimulate the academic community for further discussion concerning the molecular dynamics of hydrogen-bonded fluids in general.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Piridinas/química , Sulfonas/química , Simulação por Computador , Inibidores de Ciclo-Oxigenase 2/farmacologia , Espectroscopia Dielétrica , Etoricoxib , Ligação de Hidrogênio , Ibuprofeno/química , Ibuprofeno/farmacologia , Modelos Químicos , Prótons , Piridinas/farmacologia , Sulfonas/farmacologia , Temperatura
9.
J Phys Chem B ; 119(39): 12699-707, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356490

RESUMO

General and fundamental properties of glass-formers of various chemical bonding and physical structures have been found in the recent past. These important findings should be key to gain basic understanding of the dynamics at all time scales leading to glass transition. However, the entirety of these general properties has not been found in a single glass-former. For others to appreciate the importance of these properties, they need to collect the supporting experimental data from different glass-formers scattered over many publications. This hurdle may account for the current lack of universal recognition of the importance of these general properties by the research community. In this paper we present experimental studies of the dynamic processes over a broad range of time scales of a single glass-former, prilocaine. Practically the entire collection of fundamental properties has been found in this system. The advance should heighten the awareness of the importance of these properties in anyone's effort to solve the glass transition problem.


Assuntos
Vidro , Prilocaína/química , Varredura Diferencial de Calorimetria , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA