Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172336, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614350

RESUMO

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and âˆ¼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.

2.
Sci Total Environ ; 803: 149929, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478900

RESUMO

Nitrous acid (HONO) is a major source of hydroxyl radicals in the troposphere through its photolysis, and can significantly influence ozone (O3) levels, thereby causing considerable crop yield losses. Previous studies have assessed relative crop yield losses by using exposure-response equations with observed or simulated O3, however, the contribution of enhanced O3 due to potential HONO sources to the crop yield losses has never been quantified. In this study, for the first time, we evaluated the crop yield losses caused by potential HONO sources in the North China Plain (NCP), which is one of the major grain-producing areas in China suffering from heavy O3 pollution, by using the Weather Research and Forecasting/Chemistry (WRF-Chem) model during the wheat and maize growing seasons of 2016. HONO simulations were significantly improved after including six potential HONO sources in the WRF-Chem model. The potential HONO sources produced a daily maximum 8-h O3 enhancement of 8.1/8.2 ppb during the wheat/maize growing seasons, respectively, and led to ~11.4%/3.3% relative yield losses for wheat/maize, respectively, corresponding to approximately US$3.78/0.66 billion losses, respectively, in NCP in 2016. The above results suggest that potential HONO sources play a significant role in O3 formation and could induce high crop yield losses globally.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , China , Ácido Nitroso , Ozônio/análise , Estações do Ano
3.
PLoS One ; 13(4): e0195096, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617430

RESUMO

The oriental armyworm, Mythimna separata, is a major insect pest in China and other Asian countries. Unfortunately, suitable reference genes for quantitative real-time PCR (qRT-PCR) have not been previously identified in M. separata for normalizing target gene expression. In this study, we evaluated the expression stability of eight candidate genes (18S, ACT, EF1-α, GAPDH, RPS7, RPS13, RPL32 and TUB) in M. separata using the comparative ΔCt method, BestKeeper, Normfinder geNorm and ReFinder, a comprehensive software platform. The results indicated that the appropriate reference gene varied depending on the experimental conditions. We found that ACTIN, EF1-α and TUB were optimal for different developmental stages; TUB, RPS13 and EF1-α showed the most stable expresssion in different tissues; RPS13 and 18S were the best reference genes for monitoring expression under high temperature conditions; TUB, RPS13 and RPS7 exhibited the most stable expression under larval-crowding conditions; RPS7, EF1-α, RPL32 and GAPDH were the best for pesticide exposure experiments. This study provides tools for reliable normalization of qRT-PCR data and forms a foundation for functional studies of target gene expression in M. separata.


Assuntos
Genes de Insetos , Lepidópteros/genética , Reação em Cadeia da Polimerase em Tempo Real , Animais , Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Lepidópteros/efeitos dos fármacos , Lepidópteros/crescimento & desenvolvimento , Praguicidas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA