Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neuroanat ; 9: 36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904849

RESUMO

Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation, and germline transgenesis. Single cell electroporation (SCE) has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of SCE to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.

3.
Curr Biol ; 24(15): 1679-88, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25042585

RESUMO

BACKGROUND: Excitatory synapses in the CNS are highly dynamic structures that can show activity-dependent remodeling and stabilization in response to learning and memory. Synapses are enveloped with intricate processes of astrocytes known as perisynaptic astrocytic processes (PAPs). PAPs are motile structures displaying rapid actin-dependent movements and are characterized by Ca(2+) elevations in response to neuronal activity. Despite a debated implication in synaptic plasticity, the role of both Ca(2+) events in astrocytes and PAP morphological dynamics remain unclear. RESULTS: In the hippocampus, we found that PAPs show extensive structural plasticity that is regulated by synaptic activity through astrocytic metabotropic glutamate receptors and intracellular calcium signaling. Synaptic activation that induces long-term potentiation caused a transient PAP motility increase leading to an enhanced astrocytic coverage of the synapse. Selective activation of calcium signals in individual PAPs using exogenous metabotropic receptor expression and two-photon uncaging reproduced these effects and enhanced spine stability. In vivo imaging in the somatosensory cortex of adult mice revealed that increased neuronal activity through whisker stimulation similarly elevates PAP movement. This in vivo PAP motility correlated with spine coverage and was predictive of spine stability. CONCLUSIONS: This study identifies a novel bidirectional interaction between synapses and astrocytes, in which synaptic activity and synaptic potentiation regulate PAP structural plasticity, which in turn determines the fate of the synapse. This mechanism may represent an important contribution of astrocytes to learning and memory processes.


Assuntos
Astrócitos/metabolismo , Potenciação de Longa Duração , Plasticidade Neuronal , Sinapses/fisiologia , Animais , Sinalização do Cálcio , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Glutamato Metabotrópico/metabolismo , Córtex Somatossensorial/fisiologia , Imagem com Lapso de Tempo
4.
Eur J Pharmacol ; 719(1-3): 128-136, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23872410

RESUMO

The adult brain has long been viewed as a collection of neuronal networks that maintain a fixed configuration of synaptic connections. Brain plasticity and learning was thought to depend exclusively on changes in the gain and offset of these connections. Over the last 50 years, molecular and cellular studies of neuroplasticity have altered this view. Brain plasticity is now viewed as a continuum of structural changes that could vary from long-range axon growth to the twitching of dendritic spines and synaptic receptor composition dynamics. Plasticity proteins similar to those that drive neuronal development may underpin brain plasticity, and consequently could regulate adaptations to new experiences and learning. In vivo imaging has confirmed that neuronal plasticity in the adult brain involves subtle structural changes at synaptic connections, including synapse formation and pruning. Synaptic structural changes are associated with experience-dependent plasticity, learning, brain traumas and neurodegeneration. Owing to the expanding toolbox of in vivo imaging we have come to the brink of understanding the causal relationship between structural synaptic network dynamics and functional brain plasticity. This review summarizes the technical developments in the imaging of laboratory animals' brains in vivo and the insights they have provided into the mechanisms of brain plasticity and learning.


Assuntos
Plasticidade Neuronal , Imagem Óptica/métodos , Sinapses/fisiologia , Animais , Humanos
5.
PLoS One ; 2(4): e379, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17440615

RESUMO

The survival of vertebrate species is dependent on the ability of individuals to adequately interact with each other, a function often mediated by the olfactory system. Diverse olfactory receptor repertoires are used by this system to recognize chemicals. Among these receptors, the V1rs, encoded by a very large gene family in most mammals, are able to detect pheromones. Teleosts, which also express V1r receptors, possess a very limited V1r repertoire. Here, taking advantage of the possibility to unequivocally identify V1r orthologs in teleosts, we analyzed the olfactory expression and evolutionary constraints of a pair of clustered fish V1r receptor genes, V1r1 and V1r2. Orthologs of the two genes were found in zebrafish, medaka, and threespine stickleback, but a single representative was observed in tetraodontidae species. Analysis of V1r1 and V1r2 sequences from 12 different euteleost species indicate different evolutionary rates between the two paralogous genes, leading to a highly conserved V1r2 gene and a V1r1 gene under more relaxed selective constraint. Moreover, positively-selected sites were detected in specific branches of the V1r1 clade. Our results suggest a conserved agonist specificity of the V1R2 receptor between euteleost species, its loss in the tetraodontidae lineage, and the acquisition of different chemosensory characteristics for the V1R1 receptor.


Assuntos
Evolução Biológica , Receptores Odorantes/genética , Órgão Vomeronasal/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Peixes , Dados de Sequência Molecular , Receptores Odorantes/química , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA