Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 10(7): 2702-8, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20557080

RESUMO

This paper describes the use of a nanoindenter, equipped with a diamond tip, to form patterns of indentations on planar substrates (epoxy, silicon, and SiO(2)). The process is called "Indentation Lithography" (IndL). The indentations have the form of pits and furrows, whose cross-sectional profiles are determined by the shapes of the diamond indenters, and whose dimensions are determined by the applied load and hardness of the substrate. IndL makes it possible to indent hard materials, to produce patterns with multiple levels of relief by changing the loading force, and to control the profiles of the indentations by using indenters with different shapes. This paper also demonstrates the transfer of indented patterns to elastomeric PDMS stamps for soft lithography, and to thin films of evaporated gold or silver. Stripping an evaporated film from an indented template produces patterns of gold or silver pyramids, whose tips concentrate electric fields. Patterns produced by IndL can thus be used as substrates for surface-enhanced Raman scattering (SERS) and for other plasmonic applications.

2.
Rev Sci Instrum ; 90(4): 045105, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042979

RESUMO

High temperature nanoindentation is an emerging field with significant advances in instrumentation, calibration, and experimental protocols reported in the past couple of years. Performing stable and accurate measurements at elevated temperatures holds the key for small scale testing of materials at service temperatures. We report a novel high temperature vacuum nanoindentation system, High Temperature Ultra Nanoindentation Tester (UNHT3 HTV), utilizing active surface referencing and non-contact heating capable of performing measurements up to 800 °C. This nanoindenter is based on the proven Ultra Nano-Hardness Tester (UNHT) design that uses two indentation axes: one for indentation and another for surface referencing. Differential displacement measurement between the two axes enables stable measurements to be performed over long durations. A vacuum level of 10-7 mbar prevents sample surface oxidation at elevated temperatures. The indenter, reference, and sample are heated independently using integrated infrared heaters. The instrumental design details for developing a reliable and accurate high temperature nanoindenter are described. High temperature calibration procedures to minimize thermal drift at elevated temperatures are reported. Indentation data on copper, fused silica, and a hard coating show that this new generation of instrumented indenter can achieve unparalleled stability over the entire temperature range up to 800 °C with minimum thermal drift rates of <2 nm/min at elevated temperatures.

3.
J Mech Behav Biomed Mater ; 4(7): 1336-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21783143

RESUMO

The frictional property of soft contact lenses could have a great impact on their clinical performance. However, to date, only a handful of studies have been conducted to understand the friction mechanism(s) of the soft contact lens. In the current paper, the friction of senofilcon-A contact lenses has been studied with a stainless steel ball as the counterface in a saline solution. The load applied was between 0.5 mN and 100 mN and the sliding velocity ranges from 0.01 cm/s to 0.5 cm/s. It was found that the friction force is proportional to normal load as described by Amonton's law and this unexpected behavior can be attributed to the fact that viscous flow contributes little to the overall friction and that solid-solid contact dominates the friction of senofilcon-A. It was also found that the coefficient of the friction increases with the velocity and the quantitative relationship between them can be explained reasonably well with a previously proposed "repulsion-adsorption" model. The impacts of material chemistry, water content, test media, applied load and the sliding velocity on the friction mechanism(s) are also discussed.


Assuntos
Lentes de Contato , Fricção , Hidrogéis , Teste de Materiais , Silicones
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA