Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Rev ; 54(4): 386-400, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031813

RESUMO

Anti-angiogenic therapy is a practical approach to managing diseases with increased angiogenesis, such as cancer, maculopathies, and retinopathies. Considering the fundamental gaps in the knowledge of the vital pathways involved in angiogenesis and its inhibition and the insufficient efficiency of existing angiogenesis inhibitors, there is an increasing focus on the emergence of new therapeutic strategies aimed at inhibiting pathological angiogenesis. Angiogenesis is forming a new vascular network from existing vessels; endothelial cells (ECs), vascular lining cells, are the main actors of angiogenesis in physiological or pathological conditions. Switching from a quiescent state to a highly migratory and proliferative state during new vessel formation called "angiogenic switch" is driven by a "metabolic switch" in ECs, angiogenic growth factors, and other signals. As the characteristics of ECs change by altering the surrounding environment, they appear to have a different metabolism in a tumor microenvironment (TME). Therefore, pathological angiogenesis can be inhibited by targeting metabolic pathways. In the current review, we aim to discuss the EC metabolic pathways under normal and TME conditions to verify the suitability of targeting them with novel therapies.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Microambiente Tumoral
2.
J Tissue Eng Regen Med ; 16(12): 1121-1137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36382408

RESUMO

Autografting, a major treatment for bone fractures, has potential risks related to the required surgery and disease transmission. Bone morphogenetic proteins (BMPs) are the most common osteogenic factors used for bone-healing applications. However, BMP delivery can have shortcomings such as a short half-life and the high cost of manufacturing the recombinant proteins. Gene delivery methods have demonstrated promising alternative strategies for producing BMPs or other osteogenic factors using engineered cells. These approaches can also enable temporal overexpression and local production of the therapeutic genes in the target tissues. This review addresses recent progress on engineered viral, non-viral, and RNA-mediated gene delivery systems that are being used for bone repair and regeneration. Advances in clustered regularly interspaced short palindromic repeats/Cas9 genome engineering for bone tissue regeneration also is discussed.


Assuntos
Terapia Genética , Engenharia Tecidual , Técnicas de Transferência de Genes , Regeneração Óssea/genética , Proteínas Morfogenéticas Ósseas
3.
Iran J Basic Med Sci ; 22(8): 878-883, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31579443

RESUMO

OBJECTIVES: MicroRNAs (miRNAs) could regulate many cellular processes such as proliferation and differentiation. let-7a miRNA is one of the key regulators in the developmental transition of retinal progenitor cells into differentiated cells. Current evidence suggests that mesenchymal stem cells (MSCs) can isolate from various tissues such as bone marrow and conjunctiva. In this study, we investigated the effect of let-7a overexpression on induced differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells. MATERIALS AND METHODS: After isolation and characterization, CJMSCs were transduced with lentiviruses containing let-7a or empty vector. The effect of let-7a overexpression on expression of photoreceptor-specific markers was evaluated by quantitative real-time PCR (RT-qPCR) after 28 and 42 days of transduction. RESULTS: The relative expression of rhodopsin and recoverin genes was evaluated by RT-qPCR in let-7a overexpressing cells, control vector transduced cells and untransduced CJMSCs (control cells). Our results indicated that following overexpression of let-7a, after 28 and 42 days of transduction, significant up-regulation in the expression of recoverin (574.7 and 43.9 folds) and rhodopsin (3334.7 and 53.1 folds) were observed, respectively. CONCLUSION: Our findings indicate that overexpression of let-7a microRNA can increase the expression of photoreceptor-specific genes in CJMSCs. Moreover, it is prospective that let-7a overexpression can use as an alternative protocol for the differentiation of mesenchymal stem cells into photoreceptors. It seems that the effect of let-7a on the differentiation of CJMSCs into photoreceptors is also time-dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA