Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 207: 106269, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023994

RESUMO

The ever-increasing speed of biotherapeutic drug discovery has driven the development of automated and high throughput purification capabilities. Typically, purification systems require complex flow paths or third-party components that are not found on a standard fast protein liquid chromatography instrument (FPLC) (e.g., Cytiva's ÄKTA) to enable higher throughput. In early mAb discovery there is often a trade-off between throughput and scale where a high-throughput process requires miniaturized workflows necessitating a sacrifice in the amount of material generated. At the interface of discovery and development, flexible automated systems are required that can perform purifications in a high-throughput manner, while also generating sufficient quantities of preclinical material for biophysical, developability, and preclinical animal studies. In this study we highlight the engineering efforts to generate a highly versatile purification system capable of balancing the purification requirements between throughput, chromatographic versatility, and overall product yields. We incorporated a 150 mL Superloop into an ÄKTA FPLC system to expand our existing purification capabilities. This allowed us to perform a range of automated two-step tandem purifications including primary affinity captures (protein A (ProA)/immobilized metal affinity chromatography (IMAC)/antibody fragment (Fab)) followed by secondary polishing with either size exclusion (SEC) or cation exchange (CEX) chromatography. We also integrated a 96 deep-well plate fraction collector into the ÄKTA FPLC system with purified protein fractions being analyzed by a plate based high performance liquid chromatography instrument (HPLC). This streamlined automated purification workflow allowed us to process up to 14 samples within 24 h, enabling purification of ∼1100 proteins, monoclonal antibodies (mAbs), and mAb related protein scaffolds during a 12-month period. We purified a broad range of cell culture supernatant volumes, between 0.1 and 2 L, with final purification yields up to 2 g. The implementation of this new automated, streamlined protein purification process greatly expanded our sample throughput and purification versatility while also enabling the accelerated production of greater quantities of biotherapeutic candidates for preclinical in vivo animal studies and developability assessment.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Animais , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão , Proteína Estafilocócica A/química , Descoberta de Drogas
2.
Fungal Genet Biol ; 76: 78-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683379

RESUMO

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.


Assuntos
Agaricales/genética , Evolução Molecular , Genoma Fúngico , Madeira/microbiologia , Agaricales/enzimologia , Agaricales/patogenicidade , Lignina/metabolismo , Filogenia , Análise de Sequência de DNA
3.
ACS Chem Biol ; 18(5): 1158-1167, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37145869

RESUMO

Peptides represent an increasingly important class of pharmaceutical products. During the last decade or so, acylation with fatty acids has demonstrated considerable success in prolonging the circulating half-life of therapeutic peptides by exploiting the ability of fatty acids to reversibly bind to human serum albumin (HSA), thus significantly impacting their pharmacological profiles. Employing methyl-13C-labeled oleic acid or palmitic acid as probe molecules and exploiting HSA mutants designed to probe fatty acid binding, the signals in two-dimensional (2D) nuclear magnetic resonance (NMR) spectra corresponding to high-affinity fatty acid binding sites in HSA were assigned. Subsequently, using a set of selected acylated peptides, competitive displacement experiments by 2D NMR identified a primary fatty acid binding site in HSA utilized in acylated peptide binding. These results represent an important first step toward understanding the structural basis for acylated peptides binding to HSA.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Sítios de Ligação , Ácidos Graxos/metabolismo , Peptídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA